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A methodology to calculate generalized coherent states for a periodically driven system is presented. We
study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional
Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading,
and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a
great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of
the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-
frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven
coherent state is located in a large regular region in which thez coordinate is in resonance with the external
field. The expectation values of the wave packet show that the driven coherent state evolves along the classical
trajectory.
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I. INTRODUCTION

Construction of coherent states provides the basic under-
standing of quantum dynamics in the classical limit and
yields some insight into control of quantum systems. In this
work, we provide a methodology to construct coherent states
for a periodically driven Hamiltonian: the Rydberg atom in a
microwave field. We calculate a Gaussian-generalized coher-
ent state for the Floquet Hamiltonian in the extended phase
space. The wave packet so constructed shows classical space
localization, spreading, and revivals along the classical tra-
jectory, as an evidence of quantum-classical correspondence.

Coherent states are characterized by their localized elec-
tronic density in both configuration and momentum space.
As proposed by Schrödinger in 1926f1g, they are states of
minimum uncertainty that peak along the classical orbit. The
study of coherent states was initially focused on the simple
harmonic oscillator for which the coherent states are eigen-
states of the annihilation operator. These coherent states form
a nonorthogonal basis, admit a resolution of the identity op-
erator, and evolve into coherent states. Glauberf2g discov-
ered that the coherent states of the harmonic oscillator can be
obtained with a displacement operator acting on a reference
state. This last property was used by Zhanget al. f3g to
define generalized coherent states assad states obtained with
a displacement operator acting on a reference state,sbd that
are parametrized continuously,scd that are temporally stable
si.e., they evolve into coherent statesd, and sdd that provide
the resolution of the identity operator.

Many constructions of coherent states for the hydrogen
atom have been proposed; for instance, circular coherent
states were first proposed by Brownf4g and elliptic coherent
states by Mostowskif5g, as an application of coherent states
for arbitrary dynamical groups proposed by Perelomovf6g

and Barut f7g. Yeazell and Stroudf8g attempted to make
Rydberg atom wave packets that are localized in the angle
variables; they observe precession of the ellipse caused by a
perturbation to the Hamiltonian caused by the quantum de-
fect of alkali-metal atoms. However, those and later con-
structions of coherent states do not satisfy the resolution of
the identity operator, nor are they temporally stable. Klauder
f9g constructed generalized coherent states for the hydrogen
atom, which are obtained with a displacement operator and
provide a resolution of the identity operator. However,
Klauder’s generalized coherent states fail to be localized in
configuration space. Foxf10g proposed Gaussian generalized
coherent states for hydrogen which satisfy the same proper-
ties as Klauder’s, but that are also localized.

Localized wave packets of hydrogen were first observed
experimentally when the atom was exposed to a short intense
laser pulse, producing the excitation of a broad range of en-
ergy levels, in an experiment by ten Woldeet al. f11g. These
wave packets were the realization of analytical radial coher-
ent states proposed by Parker and Stroudf12g for the one-
dimensional hydrogen Hamiltonian, using the rotating-wave
approximation, in an external field of a picosecond laser
pulse. They also discussed the decay and revival of the wave
packet. A semiclassical formalism of the generation of wave
packets with short pulses was proposed by Alberet al. f13g.
Gay et al. f14g found that elliptic coherent states can be
found for hydrogen in circularly polarized electric and mag-
netic fields. Circular coherent states were also found for hy-
drogen driven by circularly polarized electric and magnetic
fields, which correspond to localized wave packets around
fixed points that are the analog of the Lagrangian fixed
points of the restricted three-body problemf15g. In f16g,
wave packets localized in the radial direction were calculated
for hydrogen in a linearly polarized microwave field, which
corresponds to a periodically driven Hamiltonian; these wave
packets are calculated as Floquet states which arenondisper-
sivestates. The nondispersive wave packets in a linearly po-
larized field in thez direction are axially symmetric with
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respect to thez axis; hence, they are not localized in the
azimuthalw angle. Particularly, the nondispersive states in
f16g were obtained for angular momentum quantum number
m=0; therefore, those Floquet states are very similar to Flo-
quet states for the one-dimensional model, and they are ra-
dially localized, but extend linearly in thez direction, and are
axially symmetric. Elliptic coherent states in weak crossed
electric and magnetic fields and its classical correspondence
were studied by Bellomoet al. f17g Nondispersive wave
packets obtained semiclassically that are located in the clas-
sical resonance islands are described inf18g. More recently,
Maeda and Gallagherf19g and Maedaet al. f20g observed
nondispersive one-dimensionalslineard wave packets for
lithium driving the system with a field resonant with aDn
=1 transition forn around 75. Perhaps similar techniques
could be used to test the circular coherent states that we
study.

We construct localized wave packets for hydrogen in a
linearly polarized microwave field by applying the construc-
tion of Gaussian-generalized coherent statesf10g to the Flo-
quet Hamiltonian in the extended phase space. The wave
packet we propose is formed by Floquet states which are
localized both radially and in the polar anglesud. The Flo-
quet states we use resemble circular hydrogen states, but now
they oscillate in thez direction due to the external field.
Since circular states in a linearly polarized field are more
stable than linear statesf21g, in the sense that they require
larger field strength to ionize, the wave packets have a long
lifetime and the coupling with unbound states is negligible
for the integration times in this work. Localization in the
azimuthal angleswd is achieved by the superposition of sev-
eral Floquet states.

In the construction of driven coherent states, it is impor-
tant to understand the system’s response to the microwave
parameters: frequency and strength. The appearance of
avoided crossing of the quasienergies as the parameters vary
has a dramatic effect on the components of Floquet states
f22g. A quasienergy avoided crossing results in a loss of clas-
sical space localization. Hence, tuning of the parameters is
crucial.

Our driven generalized coherent states provide great in-
sight into the quantum-classical correspondence. The classi-
cal system has three degrees of freedom with explicit time
dependencesphase space of dimension 7d; we propose the
use of wavelet time-frequency analysis to unravel the classi-
cal phase-space dynamics. This method has been used previ-
ously in celestial mechanicsf23g and in molecular systems
f24g; in this work, however, it is the first time that the
method will be used to compare the purely quantum dynam-
ics with the classical one. This method allows us to detect
both regular and chaotic regions of the phase space, as well
as locking between the internal frequency and the external
field. We show that the driven coherent states are classically
localized in a wide regular region in which the dynamics of
the coordinate parallel to the field is in resonance with the
external field. Furthermore, the dynamical evolution of our
proposed driven coherent states coincides with the classical
trajectory of the electron, evidencing the classical-quantum
correspondence of the driven Rydberg electron.

In the next section, we state the Hamiltonian for the hy-
drogen atom in a linearly polarized microwave field, both in

the velocity and length gauges. In Sec. III a quick review of
Gaussian-generalized coherent states of unperturbed hydro-
gen is presented, since this definition will be applied to the
Floquet Hamiltonian in the extended phase space. In Sec. IV,
we describe the calculation of Floquet states of hydrogen in
a microwave field and analyze their classical configuration-
space localization as a function of microwave parameters. In
Sec. V, we propose a methodology to construct generalized
coherent states for the driven system. In Sec. VI, we describe
the classical phase-space structure using the wavelet-based
frequency analysis method and show that the wave packet
obtained in Sec. V travels along the classical orbit, showing
quantum-classical correspondence in the system. Conclu-
sions are in Sec. VII.

II. RYDBERG ATOM IN A LINEARLY POLARIZED
RADIATION FIELD

The Rydberg Hamiltonian in a microwave field, in atomic
units is given by

H =
1

2
fpW + AW stdg2 −

1

r
. s1d

The radiation fieldAW is linearly polarized in the direction of

the z axis, and it is represented byAW std= k̂sl /vdsinsvtd,
where l is the strength of the microwave andv its fre-
quency. The Hamiltonians1d is in the so-called velocity
gauge. The Goeppert-Mayer gauge transformationf22g trans-
forms the Hamiltonian in the so-called length gauge, given
by the dipole Hamiltonian

H = H0 − l cossvtdz, s2d

whereH0 is the unperturbed hydrogen-atom Hamiltonian,

H0 =
p2

2
−

1

r
. s3d

The bound eigenstates and eigenenergies of Eq.s3d are de-
noted by the equation

H0ufkl = ekufkl. s4d

The indicesk correspond to the usual quantum numbers
n, l ,m, with n the principal quantum number;l =0, . . . ,n−1
and m=−l , . . . ,l. The eigenenergies are determined byn as
ek=en=−1/s2n2d.

The classical equations of motion for Hamiltonians2d are
invariant under the following transformation:

h8 = hn0
2, rW8 = rW/n0

2, pW8 = pWn0,

t8 = t/n0
3, v8 = vn0

3, l8 = ln0
4, s5d

where h=HsrW ,pW ,td and n0 is a positive constant. For our
purpose, the dynamics will be rescaled by the principal quan-
tum numbern0 representing the center of the wave packet. It
is common to express the microwave parameters rescaled
according to the previous transformation, asl8 /n0

4 and
v8 /n0

3.
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The time-dependent solutionucstdl of the Schrödinger
equation for the Rydberg Hamiltonians1d can be expanded
using the Goeppert-Mayer gauge transformationf22g

ucstdl = expS−
il

v
zsinsvtdDo

k

akstdufkl, s6d

where ufkl are the unperturbed states of hydrogens4d. The
coefficientsakstd must satisfy the auxiliary equationsf22g

dak

dt
= − iekak + il cossvtdo

j

kfkuzuf jlaj . s7d

The auxiliary equations provide the time-dependent solution
for the length-gauge Hamiltonians2d:

uc̃stdl = o
k

akstdufkl. s8d

III. GAUSSIAN-GENERALIZED COHERENT STATES OF
UNPERTURBED HYDROGEN

The Gaussian-generalized coherent states were proposed
by Fox f10g to construct states that are localized in configu-
ration space and form a nonorthogonal basis satisfying the
resolution of the identity operator.

The Gaussian-generalized coherent statesf10g for a non-
degenerate Hamiltonian are given by

uG,n0,«0l = o
n=0

` expF−
1

4

sn − n0d2

s2 G
fNsn0dg1/2 eien«0unl, s9d

wheree1,e2,¯ are the eigenenergies,unl are the eigen-
states, and

Nsn0d = o
n=0

`

expF−
sn − n0d2

2s2 G . s10d

The definition ofNsn0d guarantees normalization:

kG,n0,«0uG,n0,«0l = 1.

The previous definition is slightly modified for the case of
degenerate Hamiltoniansf25g.

For unperturbed hydrogens3d, the eigenstates withl =m
=n−1 are calledcircular statessince their electronic density
ufn,l,msx,y,zdu2 is localized in a circular band close to the
sx,yd plane and remains around the circular orbit for the
Kepler problem. Figure 1 shows the circular stateuf35,34,34l.
Circular states are localized both inr and in the angleu;
however, localization in the azimuthal anglew requires su-
perposition of states with differentm quantum numbers.

The circular Gaussian-generalized coherent statesf10g are
obtained by considering only circular states in expression
s9d. A wave packet so constructed is shown in Fig. 2. The
circular Gaussian coherent states evolve in time along the
classical Kepler orbit with the classical period given byt
=2pn0

3 f10g. Since these coherent states are constructed as
the superposition of unperturbed states with different

eigenenergies, its time evolution will produce delocalization
in thew anglef10g. The delocalization is illustrated in Fig. 2,
where the electronic distribution of a circular Gaussian co-
herent state withn0=35, «0=0, ands=1 is plotted for dif-
ferent time points normalized by the Kepler periodt. The
state follows the classical orbit until it collapses att=3t. A
half revival occurs att=6t and a full revival is produced at
t=12t.

The Kepler period coincides with the recurrence time of
the wave packet defined by Eq.s9d. The recurrence time as
well as the collapse and revival times for a wave packet have
been calculated in generalf18g:

Trecurrence= 2pSdEn

dn
sn0dD−1

,

Tcollapse= 2SsDnd2d2En

dn2 sn0dD−1

,

Trevival = 2pSd2En

dn2 sn0dD−1

. s11d

For the case of the hydrogen atomTrecurrence=t=2pn0
3,

Tcollapse=2n0
4/ s3Dn2d, andTrevival=2pn0

4/3. Dn is the number
of significant energy levels in the wave packet.

Dependence onn0, «0, s

The Gaussian-generalized coherent statess9d are defined
in terms of three parameters:n0, the center of the Gaussian
distribution; s, the standard deviation of the Gaussian; and
«0, initial phase factor of the superposition of states. The
motion of the wave packet along the classical orbit is deter-
mined byn0. The radius of the circular orbit isn0

2, and as was
mentioned previously, the Kepler period and collapse and
revival times depend only onn0.

On the other hand,s and«0 determine the initial localiza-
tion properties of the generalized coherent state and have
important effect on the collapse and revival times of the
wave packet.«0 determines the initial phase distribution of
the states forming the wave packet, which is equivalent to s

FIG. 1. sColor onlined Electronic distribution of a circular state
of hydrogen with n=35, l =m=n−1 in Cartesian configuration
space.
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fixing the initial time t for the evolution of the wave packet.
For our purposes, we set«0=0 and the initial timet=0.

The standard deviations determines the quantum states
that effectively form the coherent state in the sums9d. A very
small s produces a wave packet formed by one single state.
A large standard deviation produces a wave packet formed
by a Gaussian distribution of many states. For the case of
circular statessl =m=n−1d, coherent states with larges pro-
duce a wave packet that is initially well localized. Smalls,
on the other hand, produces wave packets with less superim-

posed states and therefore initially less localized. However,
this has a significant consequence regarding the time evolu-
tion of the wave packet. Coherent states with larges delo-
calize more quickly due to the fact that more eigenenergies
dephase faster, also producing weaker revivals. And coherent
states with smalls have longer collapse times and stronger
revivals. To illustrate this, we calculate the autocorrelation
function for coherent states with differents. For general
wave packetsuGl, the autocorrelation functionf26,27g is de-
fined as

FIG. 2. sColor onlined Circular Gaussian-generalized coherent states9d centered aroundn0=35 and with standard deviations=1.
Delocalization in the azimuthal anglew occurs in its time evolution. The time points are normalized by the Kepler periodt=2pn0

3. The wave
packet follows the Kepler orbit. It collapses att=3t; a half revival occurs at 6t and a first revival at 12t.
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Cstd = ukGs0duGstdlu2. s12d

Figure 3 shows the autocorrelation function for two wave
packets centered atn0=65 and fors=1 ands=2.5. Initially,
both wave packets are well localized, but the one withs
=2.5 is more localized. Along the time evolution, if the wave
packet is localized, the autocorrelation function is close to 1.
The revivals for both wave packets occur at multiples oft
=22t, but the revivals are much stronger for wave packets
with smaller s=1. Note that the autocorrelation function
does not reflect fractional revivals.

IV. FLOQUET STATES OF THE DRIVEN
RYDBERG ATOM

The Hamiltonian for the Rydberg atom in a microwave
field s2d has as a natural basis the quantum Floquet states
f28,29g. The dynamics of the Schrödinger equation for this
problem can be reduced to the auxiliary equations7d, a sys-
tem of time-periodic ordinary differential equations. We can
apply standard Floquet theory to the auxiliary equations to
calculate astruncatedd basis of Floquet solutions in which
any solution of Eq.s7d can be expanded. The Floquet solu-
tions then yield quantum Floquet states for the Hamiltonian
s1d using the solution expansions6d f22g.

Let Fst ,0d be the matrix of fundamental solutions of the
auxiliary equations7d with Fs0,0d=1; that is, any vector
solution astd with initial conditionsas0d=a0 is obtained as
astd=Fst ,0da0. The monodromy matrix is defined as
FsT,0d, whereT=2p /v is the period of the driving field.
The eigenvaluessn of the monodromy matrix are called the
Floquet multipliers; a Floquet quasienergymn is defined by
sn=e−imnT. Note that a quasienergymn is obtained modulov;
that is,mn=f−i lnssnd /Tgmodv. It is convenient to define a
band of widthv in which the quasienergies are defined,mn
P f−v ,0g.

A Floquet solution is obtained by evolving an eigenvector
of the monodromy matrix:

amnstd = Fst,0dxns0d,

wherexns0d represents the eigenvector corresponding to the
quasienergymn. It can be shownf22,30g that there exists a
vectorxnstd of T-periodic functions such that

amnstd = e−imntxnstd, xnstd = xnst + Td. s13d

Quantum Floquet states are then obtained from the Flo-
quet solutions of the auxiliary equationss13d using the ex-
pansions8d:

ucmnstdl = o
n

an
mnstdufnl, s14d

whereufnl are the unperturbed states of hydrogen. The quan-
tum Floquet states provide a basis for the periodically driven
quantum system in the sense that any time-dependent solu-
tion ucstdl of the Hamiltonians2d can be obtained as a super-
position of Floquet states,

ucstdl = o
n

cnucmnstdl. s15d

The construction of a driven coherent state, as we will
define below, requires the computation of a Floquet basis for
the auxiliary equations, which are necessarily truncated. A
large enough basis set of unperturbed states must be consid-
ered so that all interacting states are in the basis and the
system does not saturate. The coupling term may cause that
many unperturbed states interact. Note that att=0, a Floquet
states14d is a superposition of unperturbed statesufnl, with
coefficients given by the components of the eigenvectors
xns0d fsee Eqs.s13dg. A Floquet state may be a superposition
of many unperturbed states, and its evolution depends on the
the Floquet solutionss13d. However, at times multiple of the
field period T=2p /v, the Floquet states correspond to a
phase rotation of the state att=0. Also note that at timest
=kT, the Floquet states in the velocity gauges1d and length
gauges1d coincidefsee the expansionss6d and s8dg.

The direction of the radiation field, thez axis, determine
the following selection rules for interacting states:

m8 = m, l8 = l ± 1. s16d

Each quantum numberm present in the initial condition de-
fines a subspace of unperturbed states with the samem that
participate in the time-dependent solution. If the initial prob-
ability distribution involves unperturbed states with one fixed
quantum numberm, only states with the samem will appear
in the expansion of the time-dependent solution in terms of
unperturbed states. Therefore, the selection ruless16d impose
that individual Floquet states be expanded by unperturbed
states with the samem quantum number. We say that a Flo-
quet statebelongs to an m subspace.

The classical electronic distribution of a Floquet state in
an m subspace has axialscylindricald symmetry with respect
to thez axis. As an example, in Fig. 4sad the localization of a
Floquet state withm=34 for t=0 is represented. This Floquet
state, expressed in terms of unperturbed statess14d, is pro-
jected mainly on the componentun=35,l =34,m=34l; it is
the closest Floquet state to the circular state withn=35, m
= l =n−1 in them=34 subspace. The strength and frequency

FIG. 3. Autocorrelation functions12d for two circular Gaussian
coherent statess9d centered atn0=65 and for two valuess=1 and
s=2.5. The initial localization is improved for largers; however,
collapse times are faster and the revivals are weaker.
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of the driving field used to produce this Floquet states are
l=0.11/n0

4 andv=1.094/n0
3. This Floquet state is localized

in r, but it is not localized in theu angle and, due to sym-
metry, is of course not localized in thef angle. On the other
hand, Fig. 4sbd shows a Floquet state produced with a micro-
wave field of the same strength, but slightly different fre-
quencyv=1.15/n0

3. The Floquet states in Fig. 4 have very
simple classical space evolution: they oscillate in thez direc-
tion at the same rate as the driving field. Note that the choice
of driving frequencies for Figs. 4sad and 4sbd is close to the
the classical Kepler frequency 1/n0

3; however, the initial
electronic distribution can be significantly different. Inf18g,
a nondispersivewave packet is constructed with an exact
resonance between the classical Kepler frequency and the the
driving frequency. However, this condition alone is not
enough to obtain a wave packet that is localized, even ini-
tially. Tuning of the field strength and frequency is required.

Variation of the parametersl andv may have a dramatic
effect on the Floquet states. The interaction produced by the
microwave field produces an intricate distribution of the Flo-
quet quasienergies within anv band, in which crossings and
avoided crossings occur. In our previous workf22g, we study
the behavior of the quasienergies as functions ofl or v. We

show that selection rules exist which determine quasienergy
crossings and avoided crossings that depend on the multi-
photon process involved. We also provide an analytical proof
that a quasienergy avoided crossing produces dramatic
changes in the Floquet states associated with those quasien-
ergies: the Floquet states are expanded in terms of mainly
two unperturbed statesfsee expressions14dg. This implies
that, if such a Floquet state is populated, Rabi-type probabil-
ity transitions occur.

The localization of the Floquet states is greatly affected
by an avoided quasienergy crossing, due to the wide expan-
sion in unperturbed states. This is illustrated in Fig. 5. In Fig.
5sad we show the Floquet quasienergies as a function ofl for
states within them=34 subspace. The Floquet states associ-
ated with the two quasienergies having an avoided crossing
are shown in Fig. 5sad to 5sgd. Since their electronic distri-
bution is axially symmetric, only a slice insx,zd plane is
shownsy=0 and positivexd. The localization of the Floquet
states varies smoothly as a function of the parameterl; for
this figure, three values ofl in the interval where the
avoided quasienergy crossing occurs are illustrated. The sub-
plots Figs. 5sbd, scd, andsdd correspond to the upper quasien-
ergy in Fig. 5sad, the subplots in Figs. 5sed, sfd, andsgd to the
lower quasienergy. We note that these two Floquet states
virtually exchange their properties during the avoided cross-
ing.

V. DRIVEN GENERALIZED COHERENT STATES

The Hamiltonian for the Rydberg atom in a microwave
field in the length gauges2d is expressed in the extended
phase space as theFloquet Hamiltonian, given by

H =
p2

2
−

1

r
− zl cosu + vI , s17d

wheresu ,Id is an additional pair of canonical conjugate vari-
ables and, quantum mechanically,I =−i] /]u.

The Floquet HamiltonianH can be diagonalized as

Hucnl = mnucnl. s18d

The eigenvaluesmn coincide with the Floquet quasienergies
f28g. The eigenstatesucnl are the quantum Floquet states
ucmnl, Eq. s14d, but they arestationaryin the extended phase
space. This motivates us to construct generalized coherent
states for the Floquet Hamiltonianin the extended phase
space, using the expression for generalized coherent states of
conservative systemss9d.

We define a Gaussian-generalized coherent state for a pe-
riodically driven system as

uF,n0,«0,tl = o
n=0

` expF−
1

4

sn − n0d2

s2 G
fNsn0dg1/2 eimn«0ucmnstdl, s19d

whereNsn0d is defined as in Eq.s10d; mn are the quasiener-
gies, anducmnl are the Floquet states.

A generalized coherent state formed by Floquet states can
be constructed if the selected Floquet states satisfy two con-

FIG. 4. sColor onlined For a microwave field of strengthl
=0.11/n0

4, n0=35, sad represents the initial electronic probability
distribution of one Floquet state produced with microwave fre-
quencyv=2.5310−5=1.094/n0

3; this state is not localized in theu
angle. On the other hand, a Floquet state localized inr and u is
shown in sbd, produced with field frequencyv=2.6310−5

=1.15/n0
3. These Floquet states are axially symmetric since all in-

teracting states belong to the samem subspacesm=34d.
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ditions. First, each participating Floquet state should be lo-
calized in r and u; this requires that the selected Floquet
states correspond to quasienergies that are “far” from
avoided quasienergy crossings, which involves a careful tun-
ing of the field parametersl and v. The second condition
refers to the localization inw. It was discussed above that the
Floquet states are axially symmetric; i.e., their electronic
density is evenly distributed in thew sazimuthald angle.
Therefore, localization inw can only be achieved by com-
bining Floquet states in differentm subspaces. A localized
wave packet of the forms19d should include enough Floquet
states that belong to differentm subspaces.

In Fig. 6, a wave packet formed by a Gaussian distribu-
tion of Floquet states and its time evolution is showed. The
selection of parameters isn0=35, l=0.11/n0

4, v=1.15/n0
3,

s=1.2, and«0=0. The time has been normalized by the pe-

riod of the driving field,T=2p /v. This wave packet consti-
tutes a coherent state for the driven system, constructed as a
Gaussian distribution of Floquet states, one Floquet state for
eachm subspace. We want to include Floquet states that are
close to the circular statesl =m=n−1, with the main quan-
tum numbersn in a discrete Gaussian distribution centered at
n0=35 fsee Eq.s19dg. Hence, for each indexn, an m sub-
space was determined by fixingm=n−1. In eachm sub-
space, a set of unperturbed states was formed by all the in-
teracting l states within a large range of main quantum
numbersn. The time-dependent solutionscoherent stated was
obtained by solving the auxiliary equations7d for a large set
of unperturbed states that corresponds to the algebraic sum
of many m subspaces. The recurrence time of the wave
packet in Fig. 6 is not related to the Kepler periodt any-
more; nor is it related to the field periodT. Although the

FIG. 5. sColor onlined sad Floquet quasienergies as a function of driving field strengthl, for fixed frequencyv=1/n0
3, with n0=35. All

Floquet states are within them=34 subspace. The zoom-in panel shows two quasienergies featuring an avoided crossing.sbd, scd, andsdd
Floquet state corresponding to the upper quasienergy having an avoided crossingfmarked as “sud” g, for three different values of the field
strengthl close to the avoided crossing; the plot represents the probability density in the slicew=0. Darker color represents lower
probability density, and lighter color is higher probability.sRecall that the Floquet states have axial symmetry with respect to thez axis.d sed,
sfd, andsgd Floquet state for the lower quasienergyfmarked us “sld” g.
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wave packet is centered at a Floquet state which mainly
projects to the circular state withn=n0=35, the effect of the
microwave field is to include states with higher main quan-
tum numbersn’s, increasing the recurrence time. However,
the recurrence time is hard to predict analytically, since the
components of the Floquet states vary greatly with the pa-
rametersl and v. The revival time is also very different
from the revival time for an unperturbed coherent state, since
it is now determined both by the quasienergies participating
in the coherent state and by the components of the Floquet
states. The coherent state in Fig. 6 has a revival time of about
19T; in our computations, the wave packet maintained reviv-
als approximately at multiples of 19T up to 200T.

VI. QUANTUM-CLASSICAL CORRESPONDENCE

In general, the construction of coherent states is intrinsi-
cally linked to the classical dynamics of Hamiltonian sys-
tems. The first coherent states were constructed by
Schrödinger as states of the simple harmonic oscillator that
were localized in configuration and momentum space, in the
sense that they are minimum uncertainty states; they are in-
variant under the evolution operator, and their expectation
values follow exactly the classical orbit. In the following, we
provide numerical evidence to show that the coherent state
for the driven hydrogen atom constructed in Sec. V has ex-
pectation values that evolve according to the classical dy-
namics. The wave packet of the forms19d, represented in

FIG. 6. sColor onlined Dynamical evolution of a driven Gaussian coherent state. Microwave parametersl=0.11/n0
4, v=2.6310−5

=1.15/n0
3, andn0=35.
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Fig. 6, involves a number of significant quasienergies inter-
acting with the frequencyv of the radiation field. Although
in general such construction is expected to disperse in con-
figuration space, we observed in our computations that the
wave packet features revivals at an approximately constant
revival time of 19 periods of the field. The wave packet
shows oscillations in thez direction at exactly the same rate
as the microwave field. However, the recurrence time is not
related to the external frequency. In the following, we pro-
vide a detailed description of the classical dynamics of this
system.

The Hamiltonian function for the hydrogen atom in a mi-
crowave fields2d is a system of three degrees of freedom
with explicit time dependence; the phase space is of dimen-
sion 7. The classical equations of motion are given by

ẋ = px, ṗx = −
x

r3 ,

ẏ = py, ṗy = −
y

r3 ,

ż= pz, ṗz = −
z

r3 + l cossvtd. s20d

We want to compare the phase space dynamics of Eqs.
s20d with the dynamical evolution of our proposed coherent
states19d, as shown in Fig. 6. In all the following, the pa-
rameters are fixed asv=1.15/n0

3, l=0.11/n0
4, andn0=35.

The initial conditions for the classical trajectories are cho-
sen close to the expectation values of the wave packet att
=0. For the wave packet in Fig. 6, the expectation values,
after rescaling withn0=35 according to the transformation
s5d, are

kxl < − 1, kpxl = 0,

kyl = 0, kpyl < − 1,

kzl < − 0.18, kpzl = 0.

We now proceed to analyze the phase-space structure in
the slice defined by the previous expectation values: the
plane sx,pyd with z=−0.18, y=px=pz=0, in the region
around the pointsx,pyd=s−1,−1d.

Wavelet-based time-frequency analysis

A suitable tool to analyze the classical trajectories is time-
frequency analysis based on wavelets. The method has been
previously used to study high-dimensional systems in mo-
lecular dynamicsf24g and in celestial mechanicsf23g. The
main idea of the method is to compute the continuous wave-
let transform of the classical trajectories seen as time series
or signals. The wavelet transform provides a time-frequency
representation of each component of the trajectory, from
which the time-varying frequency can be extracted
f23,24,31g. Since regular trajectories have frequencies that
are constant in time, quasiperiodic and resonant areas in

phase space can be determined by calculating the time-
varying frequency associated with the initial condition of the
trajectory. Chaotic areas are identified with trajectories for
which the frequency varies greatly in time.

The wavelet transform of a signalfstd is defined as

Wfsa,bd =
1
Îa
E fstdc*S t − b

a
Ddt,

where c is known as themother wavelet. It is defined in
terms of two parameters:a is called the scale and it is related
to the inverse of the frequency, andb is the time parameter
that slides the wavelet to localize the signal. Hence, the
wavelet transform can be interpreted as the expansion of the
signal in the time-frequency domain. The main advantage of
the wavelet transform is that the wavelet adjusts its shape
automatically to the frequency in question to obtain better
localization of the time series.

The mother wavelet used here is the Morlet-Grossman
wavelet, given bycstd=s1/sÎ2pde2pilte−t2/2s2

, wheres and
l are parameters that can be tuned to obtain better localiza-
tion. To illustrate the use of the wavelet transform, consider
two trajectories for the systems20d. In Fig. 7sad, a regular
and a chaotic trajectory are shown, with the configuration
variablesx, y, andz as a function of time; Fig. 7sbd shows
the absolute value of the wavelet transform of these trajec-
tories, as a color-coded function, on the time-frequency
plane. The wavelet transform concentrates along a ridge that
defines the time-varying frequency. Details of the definition
of the instantaneous or time-varying frequency and methods
to compute it from the wavelet transform can be found in
f23,24,31g.

When the time-varying frequency is computed, we have a
frequency representation of the trajectory. For a regular tra-
jectory, the time average of the frequency denotes the usual
frequencysas defined with Fourier analysisd. For a chaotic
trajectory, the time average of the instantaneous frequency is
not a physical quantity; however, this average varies consid-
erably in reference to neighboring trajectories. A frequency
map can be constructed associating the time-averaged fre-
quencies with the initial condition of the trajectory. We com-
puted the frequency map for a mesh of initial conditions in
the plane of interestsx,pyd sz=−0.18,y=px=pz=0d. The fre-
quency map is illustrated in Fig. 8 as a color-coded function
on the planesx,pyd; Fig. 8sad shows the frequency map forx
and Fig. 8sbd the frequency map ofz. Although not shown,
the frequency map ofy is almost identical to the frequency
map ofx. The regular regions in phase space can be detected
as the areas where the averaged frequency varies regularly;
on the other hand, the areas where the averaged frequency is
irregular correspond to chaotic trajectories. The frequency
map of z shows that, at a certain distance from the origin,
chaos results from the equal interaction of the Coulomb force
with the driving. At further distance from the origin, there is
a large region of regular trajectories, which in some areas
alternates with chaotic motion. However, all regular trajecto-
ries in that zone are characterized by the frequency ofz
locked with the frequency of the driving fieldsv=1.15d.
Only thez component of the trajectory locks with the driv-
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ing, while the frequency ofx andy varies with the distance
from the origin. The large regular region withz in resonance
with the external frequency can be considered as a higher-
dimensional analog of a resonance island usually observed in
a stwo-dimensionald Poincaré map.

We note, particularly, that the region aroundsx0,py
0d

=s−1,−1d corresponds to regular trajectories. This region
corresponds to the expectation values of the driven coherent
state shown in Fig. 6, fort=0. The classical localization of
this wave packet is precisely in the large regular region in
which z is in resonance with the external frequencyv
=1.15. To compare the dynamics of the classical trajectories
with the evolution of the coherent state, we compute the
expectation values of the wave packet as a function of time.
Such expectation value ofx is shown in Fig. 9; whenever the
wave packet loses localization, the expectation value is close
to zero. In the figure, we also show the classical trajectory

with initial conditions given by the expectation values of the
wave packet att=0. We can observe that, whenever the wave
packet is localized, the expectation value and the trajectory
coincide exactly, reaffirming the quantum-classical corre-
spondence of the driven Rydberg atom.

VII. CONCLUSIONS

This work describes the construction and analysis of
quantum coherent states for periodically driven systems, spe-
cifically the Rydberg atom in a periodic microwave field,
based on numerically obtained Floquet states of the system.
It is shown that the driven coherent state we propose has
expectation values along the classical trajectory, providing
proof of the quantum-classical correspondence of the driven
system.

The construction of the coherent state is based on the
analysis of the Floquet Hamiltonian. Since the Floquet states
are stationary in the extended phase space, we can apply the
definition of Gaussian-generalized coherent states for unper-
turbed systems. Such a generalized coherent state was shown

FIG. 7. sColor onlined sad A regular trajectory and a chaotic
trajectory in the slice of interest of the phase space:z=−0.18, y
=px=pz=0. v=1.15/n0

3, l=0.11/n0
4, andn0=35. In sbd, the wavelet

transform of each trajectory is shown as a color-coded function of
the time-frequency plane.

FIG. 8. sColor onlined Color-coded averaged frequencies asso-
ciated with trajectories with initial conditions in the planesx,pyd.
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to be localized in the configuration space fort=0 and have
collapses and revivals. However, when compared with the
Gaussian-generalized coherent states for unperturbed hydro-
gen, the recurrence and collapse and revival times are not
longer attainable by analytical formulas. The behavior of the
driven coherent state is largely more complicated since it
depends on the composition of participating Floquet states
and their quasienergies, which are obtained numerically.

We analyzed the dramatic effect that the choice of param-
etersl andv, the strength and frequency of the microwave,
respectively, have on the phase-space localization of the Flo-
quet states. Avoided crossings of the quasienergies produce
delocalization of the Floquet states; hence, the tuning of pa-
rameters in order to “avoid” quasienergy avoided crossings is
the first step in the construction of the driven coherent state.

We selected Floquet states that are close to circular unper-
turbed states of hydrogen. The Gaussian superposition of
such Floquet states proved to be a localized wave packet,
whose dynamics matches exactly the classical dynamics of
the system. The wave packet is initially well localized, and
as it evolves in time it shows spreading along the classical
orbit and revivals. The recurrence and collapse and revival

times depend on the quasienergies and components of the
Floquet states forming the coherent state.

The wavelet-based time-frequency analysis is an excellent
tool to unveil the classical dynamics of the Rydberg atom in
a microwave field due to its ability to determine the phase
space structure of high-dimensional systems. The Rydberg
atom in a microwave field is a Hamiltonian system of three
degrees of freedom with explicit time dependence; the phase
space is of dimension 7. We detected a large region of the
phase space formed by regular trajectories, in which thez
coordinate is in resonance with the external field. The driven
coherent system we constructed was classically localized in
this region. Furthermore, we show that the expectation val-
ues of the wave packet follow the classical trajectory.

The driven coherent states constructed as a Gaussian dis-
tribution of Floquet states that are close to circular unper-
turbed states represent a formulation of a wave packet which
will remain localized along the classical orbit for a long time.
The Floquet states take a very long time to ionize due to
small couplings with the continuumf18g; hence, the analysis
based on the discrete spectrum of hydrogen remains valid for
the calculation of Floquet states and their dynamics.

FIG. 9. sColor onlined The wave packet of Fig. 6 has expectation values evolving exactly as the classical trajectory. Here we show the
evolution of the expectation valuekxlstd of the wave packet and the configuration space variablexstd of the classical trajectory.
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