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Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically
driven systems
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A methodology to calculate generalized coherent states for a periodically driven system is presented. We
study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional
Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading,
and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a
great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of
the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-
frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven
coherent state is located in a large regular region in whiclztbeordinate is in resonance with the external
field. The expectation values of the wave packet show that the driven coherent state evolves along the classical
trajectory.
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I. INTRODUCTION and Barut[7]. Yeazell and Stroud8] attempted to make
Rydberg atom wave packets that are localized in the angle
Variables; they observe precession of the ellipse caused by a
perturbation to the Hamiltonian caused by the quantum de-
. Sect of alkali-metal atoms. However, those and later con-
work, we prpwde a.methodollogy to construct coherent State§yctions of coherent states do not satisfy the resolution of
fo_r a perlod|pally driven Hamiltonian: the Rydberg atom in a o identity operator, nor are they temporally stable. Klauder
microwave field. We calculate a Gausgmn-generahzed cohe 9] constructed generalized coherent states for the hydrogen
ent state for the Floguet Hamiltonian in the extended phasg, .\ hich are obtained with a displacement operator and
space. The wave packet so constructed shows classical Sp%viae a resolution of the identity operator. However,

!ocalization, sprgading, and revivals along the classical Uagjauder’s generalized coherent states fail to be localized in
jectory, as an evidence of quantum—classmal .CorrespondenC@onfiguration space. Fd®0] proposed Gaussian generalized
Coherent states are characterized by their localized ele

. o : . %oherent states for hydrogen which satisfy the same proper-
Lromc denSI(tjybln gor'[]h"((:jqnflgu_ratTgn ;;mdhmomentum Sp"’:cceties as Klauder's, but that are also localized.
s proposed by Schrodinger in 1928}, they are states o Localized wave packets of hydrogen were first observed

minimum uncertainty that peak along the classical orbit. Theexperimentally when the atom was exposed to a short intense

study Of cohe_rent states was initially focused on the Simplq’aser pulse, producing the excitation of a broad range of en-
harmonic oscillator for which the coherent states are eigen

L ergy levels, in an experiment by ten Woldeal.[11]. These
states of the annlhllat.|on opgrator. These coheren't statgs 1EorWave packets were the realization of analytical radial coher-
a nonorthogonal basis, admit a resolution of the identity op

) . ent states proposed by Parker and Str for the one-
erator, and evolve into coherent states. GlayRe¢rdiscov- brop y ol

: ) dimensional hydrogen Hamiltonian, using the rotating-wave
ered that the coherent states of the harmonic oscillator can %proximation in an external field of a picosecond laser

Cﬁulse. They also discussed the decay and revival of the wave
packet. A semiclassical formalism of the generation of wave
packets with short pulses was proposed by Akbieal. [13].

Gay et al. [14] found that elliptic coherent states can be
found for hydrogen in circularly polarized electric and mag-
netic fields. Circular coherent states were also found for hy-
drogen driven by circularly polarized electric and magnetic
Rields, which correspond to localized wave packets around
ed points that are the analog of the Lagrangian fixed
points of the restricted three-body probldm5]. In [16],
wave packets localized in the radial direction were calculated
for hydrogen in a linearly polarized microwave field, which
corresponds to a periodically driven Hamiltonian; these wave
packets are calculated as Floquet states whicmanelisper-
*Electronic address: luzvela@cns.physics.gatech.edu sivestates. The nondispersive wave packets in a linearly po-
"Electronic address: ron.fox@physics.gatech.edu larized field in thez direction are axially symmetric with

Construction of coherent states provides the basic unde

state. This last property was used by Zhastgal. [3] to
define generalized coherent stategasstates obtained with
a displacement operator acting on a reference sthahat
are parametrized continuously,) that are temporally stable
(i.e., they evolve into coherent stateand (d) that provide
the resolution of the identity operator.

atom have been proposed; for instance, circular cohere
states were first proposed by Broyl and elliptic coherent
states by MostowsKi5], as an application of coherent states
for arbitrary dynamical groups proposed by Perelorh®y
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respect to thez axis; hence, they are not localized in the the velocity and length gauges. In Sec. Il a quick review of
azimuthal ¢ an.gle. Particularly, the nondispersive states inGaussian-generalized coherent states of unperturbed hydro-
[16] were obtained for angular momentum quantum numbegen is presented, since this definition will be applied to the
m=0; therefore, those Floquet states are very similar to FloFloquet Hamiltonian in the extended phase space. In Sec. 1V,
quet states for the one-dimensional model, and they are raye describe the calculation of Floquet states of hydrogen in
dially localized, but extend linearly in thedirection, and are 3 microwave field and analyze their classical configuration-
axially symmetric. Elliptic coherent states in weak crossedspace localization as a function of microwave parameters. In
electric and magnetic fields and its classical correspondencgac v we propose a methodology to construct generalized
were studied by Bellomet al. [17] Nondispersive wave c,perent states for the driven system. In Sec. VI, we describe
p_ackets obtalneq semiclassically that are located in the CIa?ﬁe classical phase-space structure using the wavelet-based
sical resonance islands are describe@l1i8]. More recently, frequency analysis method and show that the wave packet
Maeda and Gallaghdri9] and Maedaet al. [20] observed . ' . . :
obtained in Sec. V travels along the classical orbit, showing

nondispersive one-dimensionglineary wave packets for ) )
lithium driving the system with a field resonant withAm guantum-classical correspondence in the system. Conclu-
sions are in Sec. VII.

=1 transition forn around 75. Perhaps similar techniques
could be used to test the circular coherent states that we

study.
We construct localized wave packets for hydrogen in a  Il. RYDBERG ATOM IN A LINEARLY POLARIZED
linearly polarized microwave field by applying the construc- RADIATION FIELD

tion of Gaussian-generalized coherent stii€h to the Flo- S . ) . .

quet Hamiltonian in the extended phase space. The wave "€ Rydberg Hamiltonian in a microwave field, in atomic

packet we propose is formed by Floguet states which ar&Nits is given by

localized both radially and in the polar andlé). The Flo- 1 . 1

guet states we use resemble circular hydrogen states, but now H==[p+Alt)]*--. (1)

they oscillate in thez direction due to the external field. 2 r

3‘28; (t:r|1r§rl1j Iﬁ; ;;?tgtsa,:ggi],“?ne?;g sp:rlggziitﬁter:gyarrgqmg ®rhe radlgtlon fleIQA_|s linearly polarlzgd |nAthe dlrgct|on of

larger field strength to ionize, the wave packets have a longhe z axis, and it is represented bf(t)=k(\/w)sin(wt),

lifetime and the coupling with unbound states is negligiblewhere \ is the strength of the microwave and its fre-

for the integration times in this work. Localization in the quency. The Hamiltoniar(1) is in the so-called velocity

azimuthal angld¢) is achieved by the superposition of sev- gauge. The Goeppert-Mayer gauge transformg@@htrans-

eral Flogquet states. forms the Hamiltonian in the so-called length gauge, given
In the construction of driven coherent states, it is impor-by the dipole Hamiltonian

tant to understand the system’s response to the microwave

parameters: frequency and strength. The appearance of H=Ho, -\ codwt)z, (2

avoided cross_ing of the quasienergies as the parameters V"’WﬁereHo is the unperturbed hydrogen-atom Hamiltonian
has a dramatic effect on the components of Floquet states '

[22]. A quasienergy avoided crossing results in a loss of clas- p>? 1
sical space localization. Hence, tuning of the parameters is Ho= P 3
crucial.

Our driven generalized coherent states provide great infhe bound eigenstates and eigenenergies of(Bcare de-
sight into the quantum-classical correspondence. The classioted by the equation
cal system has three degrees of freedom with explicit time
dependencéphase space of dimension; ive propose the Hol b = & - (4)

use of wavelet time-freq_uency_analysis to unravel the classi-r_he indicesk correspond to the usual quantum numbers
cal phase-space dynamics. This method has been used preyiy o with n the principal quantum numbet=0, ... n-1

ously in celestial mechanid®23] and in molecular systems andm=-1, ... |. The eigenenergies are determinedrbgs
[24]; in this work, however, it is the first time that the o —¢ :—1,/(2n’2).

method will be used to compare the purely quantum dynam- Tr?e classical equations of motion for Hamiltonig) are
ics with the classical one. This method allows us to detecﬁ]variant under the following transformation:

both regular and chaotic regions of the phase space, as wel

as locking between the internal frequency and the external h' = hn%, = F/n%, P’ = PNy,
field. We show that the driven coherent states are classically
localized in a wide regular region in which the dynamics of t =t/n3, o = wng, N = )\ng, (5)

the coordinate parallel to the field is in resonance with the

external field. Furthermore, the dynamical evolution of ourwhere h=H(r,p,t) and n, is a positive constant. For our

proposed driven coherent states coincides with the classicaurpose, the dynamics will be rescaled by the principal quan-

trajectory of the electron, evidencing the classical-quantuntum numbemg representing the center of the wave packet. It

correspondence of the driven Rydberg electron. is common to express the microwave parameters rescaled
In the next section, we state the Hamiltonian for the hy-according to the previous transformation, a$/nj and

drogen atom in a linearly polarized microwave field, both in w'/ng.
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COHERENT STATES OF THE DRIVEN RYDBERG.

The time-dependent solutiojyAt)) of the Schrodinger
equation for the Rydberg Hamiltonigid) can be expanded
using the Goeppert-Mayer gauge transformafi22|

l(t) = exp<— %z sin(aﬁ))% a (b)), (6)

where |¢,) are the unperturbed states of hydrogdén The
coefficientsa,(t) must satisfy the auxiliary equatiofg2]

d
& _ _ iy +iN COS{wt)E_ (dlzpay.
j

at )
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The auxiliary equations provide the time-dependent solution

for the length-gauge Hamiltoniat2):

(t) = % a ()| (8)

IIl. GAUSSIAN-GENERALIZED COHERENT STATES OF
UNPERTURBED HYDROGEN

The Gaussian-generalized coherent states were proposg
by Fox[10] to construct states that are localized in configu-
ration space and form a nonorthogonal basis satisfying thte_

resolution of the identity operator.
The Gaussian-generalized coherent stfi€% for a non-
degenerate Hamiltonian are given by

p{— 1(n- no)z]
s I

G0 = 2 N 2

n=0
wheree,; <e,<--- are the eigenenergiel)) are the eigen-
states, and

eien£0| n> ,

9

— )2
_(n no)] (10)

20° |

The definition ofN(ny) guarantees normalization:

N(ng) = >, ex
n=0

<G, n0,80|G,n0,80> =1.

FIG. 1. (Color online Electronic distribution of a circular state
of hydrogen withn=35, I=m=n-1 in Cartesian configuration
space.

eigenenergies, its time evolution will produce delocalization
in the ¢ angle[10]. The delocalization is illustrated in Fig. 2,
where the electronic distribution of a circular Gaussian co-
herent state wittng=35, £5=0, ando=1 is plotted for dif-
ferent time points normalized by the Kepler periedThe

te follows the classical orbit until it collapsestat3r. A
half revival occurs at=67 and a full revival is produced at
=1271.

The Kepler period coincides with the recurrence time of
the wave packet defined by E(@). The recurrence time as
well as the collapse and revival times for a wave packet have
been calculated in generdl8]:

dE, 1
Trecurrence 277(%(”0)) )

d’E, 1
Tcollapse: 2((An)2 dn2 (no)) )

d’E -
TrevivaI:277< dnzn(no)) . (11
For the case of the hydrogen atoff}ecu”ence=7=27rng,
Teollapse= 2o/ (3AN?), and Tye =275/ 3. An is the number

The previous definition is slightly modified for the case of Of significant energy levels in the wave packet.

degenerate Hamiltoniad&5].
For unperturbed hydroge8), the eigenstates with=m

=n-1 are callectircular statessince their electronic density
|n1.m(X,Y,2)|? is localized in a circular band close to the

Dependence omg, &g, o

The Gaussian-generalized coherent stédsre defined

(x,y) plane and remains around the circular orbit for thein terms of three parametensg, the center of the Gaussian

Kepler problem. Figure 1 shows the circular statgs 34 34-
Circular states are localized both inand in the angles;
however, localization in the azimuthal angterequires su-
perposition of states with differemh quantum numbers.
The circular Gaussian-generalized coherent sfdi@sare

distribution; o, the standard deviation of the Gaussian; and
gq, Initial phase factor of the superposition of states. The
motion of the wave packet along the classical orbit is deter-
mined byng. The radius of the circular orbit n% and as was

mentioned previously, the Kepler period and collapse and

obtained by considering only circular states in expressiomevival times depend only on,.
(9). A wave packet so constructed is shown in Fig. 2. The On the other handy andey determine the initial localiza-
circular Gaussian coherent states evolve in time along théon properties of the generalized coherent state and have

classical Kepler orbit with the classical period given by

important effect on the collapse and revival times of the

=27rn8 [10]. Since these coherent states are constructed agave packetes, determines the initial phase distribution of
the superposition of unperturbed states with differenthe states forming the wave packet, which is equivalent to s
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FIG. 2. (Color onling Circular Gaussian-generalized coherent st&ecentered arounay=35 and with standard deviation=1.
Delocalization in the azimuthal angdeoccurs in its time evolution. The time points are normalized by the Kepler pepiadmg. The wave
packet follows the Kepler orbit. It collapsestat3r; a half revival occurs at 6and a first revival at 12

fixing the initial timet for the evolution of the wave packet. posed states and therefore initially less localized. However,

For our purposes, we sep=0 and the initial timet=0. this has a significant consequence regarding the time evolu-
The standard deviation determines the quantum states tion of the wave packet. Coherent states with lasgdelo-

that effectively form the coherent state in the s(@ Avery  calize more quickly due to the fact that more eigenenergies

small o produces a wave packet formed by one single statedephase faster, also producing weaker revivals. And coherent

A large standard deviation produces a wave packet formegtates with smalb- have longer collapse times and stronger

by a Gaussian distribution of many states. For the case akvivals. To illustrate this, we calculate the autocorrelation

circular stategl =m=n-1), coherent states with largepro-  function for coherent states with different For general

duce a wave packet that is initially well localized. SmaJl wave packet$G), the autocorrelation functiof26,27 is de-

on the other hand, produces wave packets with less superirfined as
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atn(t) = O(t,0)x,(0),

wherex,(0) represents the eigenvector corresponding to the
quasienergyu,. It can be showri22,3Q that there exists a
vectorx,(t) of T-periodic functions such that

C@®)

N/

“H” MIH i “““ L “H I “m“ aﬂn(t) = e_i:untxn(t)’ Xn(t) = Xn(t + T) . (13)
' ' ' ' 6=25 | Quantum Floquet states are then obtained from the Flo-
quet solutions of the auxiliary equatio$3) using the ex-
§ pansion(8):
|gn(t) = 2 ahn(t)] o), (14)
\ A - N n
0 20 40 32 80 100 120 where|¢,,) are the unperturbed states of hydrogen. The quan-

tum Floquet states provide a basis for the periodically driven
FIG. 3. Autocorrelation functiori12) for two circular Gaussian quantum System in the sense that any time-dependent solu-

coherent state) centered ahy=65 and for two values=1 and  tjgn |yA(t)) of the Hamiltonian2) can be obtained as a super-
0=2.5. The initial localization is improved for larget, however, position of Floquet states

collapse times are faster and the revivals are weaker.
(D) = 2 col (). (15
C(t) =[(G(0)[G(1)[. (12 "
The construction of a driven coherent state, as we will
Figure 3 shows the autocorrelation function for two wavedefine below, requires the computation of a Floquet basis for
packets centered ap=65 and foro=1 ando=2.5. Initially, the auxiliary equations, which are necessarily truncated. A
both wave packets are well localized, but the one with large enough basis set of unperturbed states must be consid-
=2.5 is more localized. Along the time evolution, if the wave ered so that all interacting states are in the basis and the
packet is localized, the autocorrelation function is close to 18ystem does not saturate. The coupling term may cause that
The revivals for both wave packets occur at multiplest of many unperturbed states interact. Note thatdt, a Floquet
=227, but the revivals are much stronger for wave packetstate(14) is a superposition of unperturbed stafgs), with
with smaller o=1. Note that the autocorrelation function coefficients given by the components of the eigenvectors
does not reflect fractional revivals. X,(0) [see Eqgs(13)]. A Floquet state may be a superposition
of many unperturbed states, and its evolution depends on the
the Floquet solution§l3). However, at times multiple of the
IV. FLOQUET STATES OF THE DRIVEN field period T=27/w, the Floquet states correspond to a
RYDBERG ATOM phase rotation of the state 0. Also note that at times
. i , =kT, the Floquet states in the velocity gaudge and length
_ The Hamiltonian for the Rydberg atom in a microwave gauge(1) coincide[see the expansior(§) and (8)].
field (2) has as a natural basis the quantum Floquet states rhe direction of the radiation field, theaxis, determine

[28,29. The dynamics of the Schrédinger equation for thisye foliowing selection rules for interacting states:
problem can be reduced to the auxiliary equatiioy a sys-

tem of time-periodic ordinary differential equations. We can m=m, I"=l+1. (16)
apply standard Floquet theory to the auxiliary equations t
calculate a(truncated basis of Floquet solutions in which
any solution of Eq(7) can be expanded. The Floquet solu-
tions then yield quantum Floquet states for the Hamiltonia
(1) using the solution expansid) [22].

%ach quantum numben present in the initial condition de-
fines a subspace of unperturbed states with the sartiat

articipate in the time-dependent solution. If the initial prob-

bility distribution involves unperturbed states with one fixed
. . guantum numbem, only states with the santa will appear

L,e_t ®(t,0) b? the mgtnx of fundamental_soluuons of the in the expansion of the time-dependent solution in terms of
auxiliary equation(7) with @(0,0)=1; that is, any vector nherrhed states. Therefore, the selection ril§simpose
solution a(t) with initial conditionsa(0)=2ay is obtained as hat individual Floquet states be expanded by unperturbed
a(t)=d(t,0)a,. The monodromy matrix is defined as giates with the same quantum number. We say that a Flo-
®(T,0), whereT=27/w is the period of the driving field. quet statebelongs to an m subspace
The eigenvalues, of the monodromy matrix are called the  The classical electronic distribution of a Floquet state in
Floquet multipliers; a Floquet quasienergy is defined by  anm subspace has axiétylindrical) symmetry with respect
on,=€"#T. Note that a quasienergy, is obtained modul@;  to thez axis. As an example, in Fig.(d the localization of a
that is, u,=[-i In(o,)/ TJmodw. It is convenient to define a Floquet state witm=34 fort=0 is represented. This Floquet
band of widthe in which the quasienergies are defingd,  state, expressed in terms of unperturbed stétds is pro-

e[-w,0]. jected mainly on the componefi=35,=34,m=34); it is
A Floguet solution is obtained by evolving an eigenvectorthe closest Floquet state to the circular state w35, m
of the monodromy matrix: =l=n-1 in them=34 subspace. The strength and frequency
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show that selection rules exist which determine quasienergy
crossings and avoided crossings that depend on the multi-
photon process involved. We also provide an analytical proof
that a quasienergy avoided crossing produces dramatic
changes in the Floquet states associated with those quasien-
ergies: the Floquet states are expanded in terms of mainly
two unperturbed statelsee expressiofil4)]. This implies

that, if such a Floquet state is populated, Rabi-type probabil-
ity transitions occur.

The localization of the Floquet states is greatly affected
by an avoided quasienergy crossing, due to the wide expan-
sion in unperturbed states. This is illustrated in Fig. 5. In Fig.
5(a) we show the Floquet quasienergies as a functiax foir
states within then=34 subspace. The Floquet states associ-
ated with the two quasienergies having an avoided crossing
are shown in Fig. &) to 5(g). Since their electronic distri-
bution is axially symmetric, only a slice itx,z) plane is
shown(y=0 and positivex). The localization of the Floguet
states varies smoothly as a function of the parametdor
this figure, three values ok in the interval where the
avoided quasienergy crossing occurs are illustrated. The sub-
plots Figs. %b), (c), and(d) correspond to the upper quasien-
ergy in Fig. %a), the subplots in Figs.(8), (f), and(g) to the
lower quasienergy. We note that these two Floquet states
virtually exchange their properties during the avoided cross-

ing.

(b) 1225

FIG. 4. (Color online For a microwave field of strength V. DRIVEN GENERALIZED COHERENT STATES

:O.ll/né, ny=35, (a) represents the initial electronic probability o . .
distribution of one Floquet state produced with microwave fre- The Hamiltonian for the Rydberg atom in a microwave

quencyw=2.5X 10‘5:1.094/ng; this state is not localized in the field in the length gauge?) is _expr.esse.d in the extended
angle. On the other hand, a Floquet state localized &md ¢ is ~ Phase space as tii@oquet Hamiltonian given by

shown in (b), produced with field frequencyw=2.6X10"° 2

=1.15/n8. These Floquet states are axially symmetric since all in- H = P_2_ Z\ COSO+ wl, (17)
teracting states belong to the samesubspacém=34). 2

of the driving field used to produce this Floguet states ard/here(6,1) is an additional pair of canonical conjugate vari-
A=0.11/m} and w=1.094h%. This Floquet state is localized ables and, quantum mechanically,—id/d6.

in r, but it is not localized in the? angle and, due to sym-  'he Floguet Hamiltoniart{ can be diagonalized as

metry, is of course not localized in thiangle. On the other M) = paol ) (18)
hand, Fig. 4b) shows a Floquet state produced with a micro- e

wave field of the same strength, but slightly different fre- The eigenvalueg.,, coincide with the Floguet quasienergies
quencyw=1.15/n8. The Floquet states in Fig. 4 have very [28]. The eigenstate&),) are the quantum Floquet states
simple classical space evolution: they oscillate inzldirec-  |¢*), Eq.(14), but they arestationaryin the extended phase
tion at the same rate as the driving field. Note that the choicepace. This motivates us to construct generalized coherent
of driving frequencies for Figs.(d4) and 4b) is close to the states for the Floguet Hamiltoniaim the extended phase
the classical Kepler frequency rf/ however, the initial space using the expression for generalized coherent states of
electronic distribution can be significantly different. [Ib8], conservative system@).

a nondispersivewave packet is constructed with an exact We define a Gaussian-generalized coherent state for a pe-
resonance between the classical Kepler frequency and the thiedically driven system as

driving frequency. However, this condition alone is not 1 2

enough to obtain a wave packet that is localized, even ini- . exp[— 1(n ;20) }

tially. Tuning of the field strength and frequency is required. _ 4 ol i
Variation of the parameters and w may have a dramatic IF.No.e0.t) = EO [N(ng)1*2 erelyn(t)), (19)

effect on the Floquet states. The interaction produced by the

microwave field produces an intricate distribution of the Flo-whereN(n) is defined as in Eq(10); u, are the quasiener-
quet quasienergies within amband, in which crossings and gies, and#n) are the Floquet states.

avoided crossings occur. In our previous wf2R], we study A generalized coherent state formed by Floquet states can
the behavior of the quasienergies as functions of . We  be constructed if the selected Floquet states satisfy two con-
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FIG. 5. (Color onling (a) Floquet quasienergies as a function of driving field strengtfor fixed frequencyw=1/ng, with ng=35. All
Floquet states are within the=34 subspace. The zoom-in panel shows two quasienergies featuring an avoided ctbssiog.and (d)
Floquet state corresponding to the upper quasienergy having an avoided cfosaikgd as (u)”], for three different values of the field
strength\ close to the avoided crossing; the plot represents the probability density in thegsli@ée Darker color represents lower
probability density, and lighter color is higher probabilifiRecall that the Floquet states have axial symmetry with respect takis) (e),
(f), and(g) Floguet state for the lower quasienerggarked us (1)"].

ditions. First, each participating Floquet state should be lofiod of the driving field,T=27/w. This wave packet consti-
calized inr and 6; this requires that the selected Floquettutes a coherent state for the driven system, constructed as a
states correspond to quasienergies that are “far” fronGaussian distribution of Floquet states, one Floquet state for
avoided quasienergy crossings, which involves a careful tuneachm subspace. We want to include Floquet states that are
ing of the field parameters and w. The second condition close to the circular statdsm=n-1, with the main quan-
refers to the localization ig. It was discussed above that the tum numbers in a discrete Gaussian distribution centered at
Floquet states are axially symmetric; i.e., their electroniony=35 [see Eq.(19)]. Hence, for each inder, an m sub-
density is evenly distributed in the (azimuthal angle. space was determined by fixilp=n-1. In eachm sub-
Therefore, localization inp can only be achieved by com- space, a set of unperturbed states was formed by all the in-
bining Floquet states in differemh subspaces. A localized teracting| states within a large range of main quantum
wave packet of the formil9) should include enough Floguet numbersn. The time-dependent solutidnoherent stajevas
states that belong to different subspaces. obtained by solving the auxiliary equati¢r) for a large set

In Fig. 6, a wave packet formed by a Gaussian distribu-of unperturbed states that corresponds to the algebraic sum
tion of Floquet states and its time evolution is showed. Theof many m subspaces. The recurrence time of the wave
selection of parameters is=35, A=0.11/¢, w:1.15/n§, packet in Fig. 6 is not related to the Kepler periecny-
0=1.2, ande(=0. The time has been normalized by the pe-more; nor is it related to the field periol Although the
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FIG. 6. (Color online Dynamical evolution of a driven Gaussian coherent state. Microwave parametéml/ng, ©0=2.6X107°
=1.15/h3, andny=35.

wave packet is centered at a Floguet state which mainly  VI. QUANTUM-CLASSICAL CORRESPONDENCE
projects to the circular state with=ngy=35, the effect of the

microwave field is to include states with higher main quan-., .y jinked to the classical dynamics of Hamiltonian sys-
tum numbers’s, increasing the recurrence time. HOWeVer,;ams  The first coherent states were constructed by
the recurrence time is hard to predict analytically, since thescnradinger as states of the simple harmonic oscillator that
components of the Floquet states vary greatly with the pagere |ocalized in configuration and momentum space, in the
rametersk and w. The revival time is also very different sense that they are minimum uncertainty states; they are in-
from the revival time for an unperturbed coherent state, sinc@ariant under the evolution operator, and their expectation
it is now determined both by the quasienergies participatingalues follow exactly the classical orbit. In the following, we
in the coherent state and by the components of the Floqugirovide numerical evidence to show that the coherent state
states. The coherent state in Fig. 6 has a revival time of abotibr the driven hydrogen atom constructed in Sec. V has ex-
19T; in our computations, the wave packet maintained revivpectation values that evolve according to the classical dy-
als approximately at multiples of T9up to 200 namics. The wave packet of the for(h9), represented in

In general, the construction of coherent states is intrinsi-
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Fig. 6, involves a number of significant quasienergies interphase space can be determined by calculating the time-
acting with the frequencw of the radiation field. Although varying frequency associated with the initial condition of the
in general such construction is expected to disperse in cortrajectory. Chaotic areas are identified with trajectories for
figuration space, we observed in our computations that thevhich the frequency varies greatly in time.
wave packet features revivals at an approximately constant The wavelet transform of a sign#(t) is defined as
revival time of 19 periods of the field. The wave packet
shows oscillations in the direction at exactly the same rate 1 ot
as the microwave field. However, the recurrence time is not Wi(a,b) = \_EJ Oy (T)dt’
related to the external frequency. In the following, we pro-
vide a detailed description of the classical dynamics of thigvhere ¢ is known as themother waveletlt is defined in
system. terms of two parameters:is called the scale and it is related
The Hamiltonian function for the hydrogen atom in a mi- to the inverse of the frequency, aids the time parameter
crowave field(2) is a system of three degrees of freedomthat slides the wavelet to localize the signal. Hence, the
with explicit time dependence; the phase space is of dimernwavelet transform can be interpreted as the expansion of the
sion 7. The classical equations of motion are given by signal in the time-frequency domain. The main advantage of
the wavelet transform is that the wavelet adjusts its shape
automatically to the frequency in question to obtain better
localization of the time series.
The mother wavelet used here is the Morlet-Grossman
y wavelet, given by(t) =(1/c\2m)e2™Ne 29’ whereo and
3 \ are parameters that can be tuned to obtain better localiza-
tion. To illustrate the use of the wavelet transform, consider
. two trajectories for the systerf20). In Fig. 7(a), a regular
z=p, Pp,=-—3+Acodut). (200  and a chaotic trajectory are shown, with the configuration
r variablesx, y, andz as a function of time; Fig. (b) shows

We want to compare the phase space dynamics of quhe absolute value of the wavelet transform of these trajec-
(20) with the dynamical evolution of our proposed coherentlories, as a color-coded function, on the time-frequency
state(19), as shown in Fig. 6. In all the following, the pa- plane. The wavelet transform concentrates along a ridge that
rameters are fixed as=1.15/hg, A\=0.11/h¢, andn,=35. defines the time-varying frequency. Details of the definition

The initial conditions for the classical trajectories are cho-Of the instantaneous or time-varying frequency and methods
sen close to the expectation values of the wave packet atl0 compute it from the wavelet transform can be found in
=0. For the wave packet in Fig. 6, the expectation values[23124’3]]-

after rescaling withny=35 according to the transformation  When the time-varying frequency is computed, we have a
(5). are frequency representation of the trajectory. For a regular tra-

jectory, the time average of the frequency denotes the usual
X==-1, (po=0, frequency(as defined with Fourier analysisFor a chaotic
trajectory, the time average of the instantaneous frequency is
(=0, (py=-1, not a physical quantity; however, this average varies consid-
erably in reference to neighboring trajectories. A frequency
(z)~-0.18, (p,)=0. map can bg COI’IS.tl’l.JF)ted asspciating the Fime—averaged fre-
guencies with the initial condition of the trajectory. We com-
We now proceed to analyze the phase-space structure fjuted the frequency map for a mesh of initial conditions in
the slice defined by the previous expectation values: théhe plane of interesix, p,) (z=-0.18 y=p,=p,=0). The fre-
plane (x,p,) with z=-0.18, y=p,=p,=0, in the region quency map is illustrated in Fig. 8 as a color-coded function
around the pointx, py)=(-1,-1). on the plandx, p,); Fig. 8(a) shows the frequency map far
and Fig. 8b) the frequency map of. Although not shown,
the frequency map of is almost identical to the frequency
map ofx. The regular regions in phase space can be detected
A suitable tool to analyze the classical trajectories is time-as the areas where the averaged frequency varies regularly;
frequency analysis based on wavelets. The method has been the other hand, the areas where the averaged frequency is
previously used to study high-dimensional systems in moirregular correspond to chaotic trajectories. The frequency
lecular dynamicg24] and in celestial mechanid23]. The  map ofz shows that, at a certain distance from the origin,
main idea of the method is to compute the continuous waveehaos results from the equal interaction of the Coulomb force
let transform of the classical trajectories seen as time seriesith the driving. At further distance from the origin, there is
or signals. The wavelet transform provides a time-frequency large region of regular trajectories, which in some areas
representation of each component of the trajectory, fronalternates with chaotic motion. However, all regular trajecto-
which the time-varying frequency can be extractedries in that zone are characterized by the frequency of
[23,24,3]. Since regular trajectories have frequencies thatocked with the frequency of the driving fieltw=1.15.
are constant in time, quasiperiodic and resonant areas i@nly thez component of the trajectory locks with the driv-

- . X
X= Pys px__r_ga

y:pyv py:_

Wavelet-based time-frequency analysis
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FIG. 8. (Color online Color-coded averaged frequencies asso-

. ) . ciated with trajectories with initial conditions in the plate p,).
FIG. 7. (Color onling (a) A regular trajectory and a chaotic

trajectory in the slice of interest of the phase space-0.18,y L . . .
=p=p,=0. w=1.15/%, A=0.11/%, andny=35. In (b), the wavelet with initial conditions given by the expectation values of the

transform of each trajectory is shown as a color-coded function ofvave packet at=0. We can observe that, whenever the wave

the time-frequency plane. packet is localized, the expectation value and the trajectory
coincide exactly, reaffirming the quantum-classical corre-

ing, while the frequency ok andy varies with the distance spondence of the driven Rydberg atom.

from the origin. The large regular region within resonance

with the external frequency can be considered as a higher-
dimensional analog of a resonance island usually observed in
a (two-dimensiongl Poincaré map. This work describes the construction and analysis of
We note, particularly, that the region arounido,pg) qguantum coherent states for periodically driven systems, spe-
=(-1,-1) corresponds to regular trajectories. This regioncifically the Rydberg atom in a periodic microwave field,
corresponds to the expectation values of the driven coherelased on numerically obtained Floquet states of the system.
state shown in Fig. 6, for=0. The classical localization of It is shown that the driven coherent state we propose has
this wave packet is precisely in the large regular region irexpectation values along the classical trajectory, providing
which z is in resonance with the external frequeney proof of the quantum-classical correspondence of the driven
=1.15. To compare the dynamics of the classical trajectoriesystem.
with the evolution of the coherent state, we compute the The construction of the coherent state is based on the
expectation values of the wave packet as a function of timeanalysis of the Flogquet Hamiltonian. Since the Floquet states
Such expectation value afis shown in Fig. 9; whenever the are stationary in the extended phase space, we can apply the
wave packet loses localization, the expectation value is closeefinition of Gaussian-generalized coherent states for unper-
to zero. In the figure, we also show the classical trajectoryurbed systems. Such a generalized coherent state was shown

VII. CONCLUSIONS
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FIG. 9. (Color online The wave packet of Fig. 6 has expectation values evolving exactly as the classical trajectory. Here we show the
evolution of the expectation valug)(t) of the wave packet and the configuration space variati)eof the classical trajectory.

to be localized in the configuration space fet0 and have times depend on the quasienergies and components of the
collapses and revivals. However, when compared with thé&loquet states forming the coherent state.
Gaussian-generalized coherent states for unperturbed hydro- The wavelet-based time-frequency analysis is an excellent
gen, the recurrence and collapse and revival times are nabol to unveil the classical dynamics of the Rydberg atom in
longer attainable by analytical formulas. The behavior of thea microwave field due to its ability to determine the phase
driven coherent state is largely more complicated since ispace structure of high-dimensional systems. The Rydberg
depends on the composition of participating Floquet stateatom in a microwave field is a Hamiltonian system of three
and their quasienergies, which are obtained numerically. degrees of freedom with explicit time dependence; the phase
We analyzed the dramatic effect that the choice of paramspace is of dimension 7. We detected a large region of the
eters\ and w, the strength and frequency of the microwave,phase space formed by regular trajectories, in whichzthe
respectively, have on the phase-space localization of the Flaoordinate is in resonance with the external field. The driven
quet states. Avoided crossings of the quasienergies produc®herent system we constructed was classically localized in
delocalization of the Floquet states; hence, the tuning of pathis region. Furthermore, we show that the expectation val-
rameters in order to “avoid” quasienergy avoided crossings isies of the wave packet follow the classical trajectory.
the first step in the construction of the driven coherent state. The driven coherent states constructed as a Gaussian dis-
We selected Floquet states that are close to circular unpetribution of Floquet states that are close to circular unper-
turbed states of hydrogen. The Gaussian superposition afirbed states represent a formulation of a wave packet which
such Floquet states proved to be a localized wave packeuill remain localized along the classical orbit for a long time.
whose dynamics matches exactly the classical dynamics dfhe Floquet states take a very long time to ionize due to
the system. The wave packet is initially well localized, andsmall couplings with the continuupd 8]; hence, the analysis
as it evolves in time it shows spreading along the classicabased on the discrete spectrum of hydrogen remains valid for
orbit and revivals. The recurrence and collapse and revivahe calculation of Floquet states and their dynamics.
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