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Abstract. - Aggregates generated by probabilistic diffusion are fractals reminiscent of the 
deterministically generated Julia sets: the growth measure of the aggregate is equivalent to the 
«electric field» around the Julia set and both fractals have a characteristic hairy structure with 
the fields diverging at the tips. We conjecture that their ftr1.) spectra share the same qualitative 
features. For Julia sets the part of the spectrum corresponding to the tips (smallest r1.'s) is robust 
under small parameter changes. In the fjords the electric field is vanishingly small, the 
associated r1.'s diverge and ftr1.)'s are noisy, poorly convergent and highly sensitive to small 
variations of parameters. The fjords are screened, and this screening can manifest itself inftr1.) 
as a «phase transition» at the Hausdorff dimension. 

Fractal aggregates have been observed in a variety of experiments [1, 2], as well as 
in numerical simulations of diffusion-limited aggregation (DLA) or other clustering 
models [3, 4]. The aggregates grow rapidly at the tips, but very sluggishly in the ends of the 
fjords between the branches of the aggregates. In this note we shall argue that in general 
the ends of these fjords will be screened and inactive: in thef(cx) spectrum one expects a «tip 
phase» and a «fjord phase» of a very different nature, possibly separated by a phase 
transition at the Hausdorff dimension. Our arguments rely on «hairy aggregates» developed 
by the theory of complex iterations, but the lessons are of physical interest: they suggest 
that only the small cx's (those which measure the accumulation at tips) are experimentally 
measurable. The large cx's corresponding to the fjords are noisy and experimentally 
inaccessible. This makes the Hausdorff dimension hard to measure, even for the simplest 
mathematical models of fractal aggregates. Indeed, the existing numerical and experimental 
ft.ex) spectra for aggregates show strong fluctuations for large ex values and are not 
inconsistent with a phase transition [2]. 

Both the diffusion field around an aggregate and the electrostatic potential around a 
conductor satisfy the Laplace equation [3, 4]. One expects the electric field to diverge at the 
tips and vanish in the fjords, but in general the evaluation of the electric field is difficult. The 
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utility of our analogy between the fractal aggregates and the Julia sets rest on the 
observation of Douady and Hubbard [5] that the 2-dimensional electrostatics has a 
particularly simple solution if the «aggregate» is a Julia set. However, it must be 
emphasized that unlike the physical dynamically growing fractal aggregates, our Julia sets 
are static, and we use them only to develop intuition about the expected qualitative features 
of the j(a.) spectrum for a given static «aggregate». 

For the Julia sets numerical computation of the electric field is straightforward; we refer 
the reader to ref. [6] for an introduction into the theory of complex iterations in general, and 
computation of the electric field in particular. As a matter of fact, as we are interested only 
in the density of electric field lines on the Julia set itself (which, in the case of a physical 
aggregate, is the growth measure), we do not even need to evaluate the electric field. This 
density is generated by the inverse iterates of the polynomial map under investigation, and 
the extremal a.'s are available analytically in terms of the eigenvalues of the fixed points and 
the cycles of the mapping. 

Consider, as a prototype, map [7, 8] 

f (z) = z2 + c, (la) 

which has the fixed points (here and in the following, 0 refers to using+ \I, 1 to using - y) 

_l+~ _1-~ (lb) 
Zo - 2 ' Z1 - 2 . 

The inverse map has two branches, f.- 1
, where e is 0 or 1: here f 01(y) = ...;;;=-c and 

f"1 1(y) = - ...;;;=-c. Depending on the value of the parameter c, one distinguishes three 
situations. 1) If the critical point Zc (defined by f'(zc) = 0) converges to a stable periodic 
orbit, the basin of attraction has finite measure. Its border is the Julia set, the union of all 
unstable periodic orbits. 2) If Zc is preperiodic to an unstable periodic orbit, i.e. 
fn(zc) = fn-k(zc), the basin of attraction shrinks to zero, but the Julia set is still connected. 
The corresponding parameter values are called a Misiurewicz points and are denoted [6] 
(n, k). We shall refer to such Julia sets as «hairy». 3) If Zc iterates to infinity, the Julia set 
disintegrates into «Cantor dust» of dimension smaller than one. Here we concentrate on the 
hairy Julia sets, such as the set plotted in fig. 1, motivated by their similarity to the 
experimentally and numerically observed fractal aggregates. (Sets with finite but thin 
basins of attraction might also be acceptable as models of fractal aggregates.) 

The potential U(z) is calculated by conformally mapping [5, 6] the Julia set onto the unit 
circle 

U(z) = ~!1} :nlog\r(z)i. (2) 

Notice that U = 0 on the Julia set, i.e. the set is «grounded». Around a point Zion the Julia 
set the potential scales as 

U(zi + e)- e""'. (3) 

For example, for the fixed point z0 it follows from (1) that in one iteration the potential 
doubles, whereas the length scale e is expanded by the eigenvalue off at zo: 

Ctmin = log\!' (zo)\ · 
log2 

(4) 
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Fig. 1. - a) The Julia set for c = - 0.636 754 - 0.685 031i. At this parameter value Zc lands on the fixed
point z0 in five iterations. This particular Julia set is chosen here for its visual resemblance to DLA 
aggregates (from the point of view of the theory of complex iterations, five-fold branchings play no 
special role). The set is approximated by scanning a grid of size 1000 x 1000 and retaining those initial 
z's whose first 25 iterates have not diverged outside the frame of the plot. b) The same Julia set as in 
a). Plotted are the first 216 tips and fjords obtained by inverse iteration from the fixed points z0 and z1• 

The density of points is proportional to the electric field, which is equivalent to the hannonic measure 
of the «aggregate». 

What is special about the fixed point z0? It is located at the tip with the strongest divergence 
of the field, and thus the minimal value of et. Starting from this tip, inverse iterations of (1) 
generate all other tips on the Julia set (fig. lb)). Ctmin < 1, so the electric field (E =VU) 
diverges as E(z0 + c:)- c:"'- 1• 

The role of the other fixed point, z1 , is more delicate. The associated et1 =log2/log lf'(z1)1 
is larger than one, so the electric field vanishes at z1 • For the particular hairy Julia set 
depicted in fig. la), z1 is the location of the «primary» five-fold branching; its backward 
iterates generate all fjords in fig. lb), and et1 is the maximal et. However, this Julia set is 
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extremely atypical; as we shall see, in general one expects existence of long unstable cycles 
of marginal stability, with corresponding ix's arbitrarily large. For the example of fig. la) all 
tips and fjords are preimages of the two fixed points, so the corresponding ix's can be 
evaluated from inverse iterates of the map. Going one step backwards, the potential is 
halved and the length scale is multiplied by the derivative of the map so with the 
terminology Z<Q, ,1, ... , <,.. = r:. l 0 .. , 0 !~ l (Z,

0
) We Obtain the 2" + l IX-Values On the n-th Step as 

(5) 

where ei=O, 1. If the critical point is traversed, we use log((1!2)Vlz'<»'1>· ... ,.,. .... ziol) as 
denominator, because the inverse map of (la) behaves like !v'Z around the critical point. 

The natural measure of interest for aggregates is the harmonic measure [9], i.e. the 
probability of growth is proportional to the strength of the electric field, or, as explained 
above, the density of inverse iterates (fig. lb)). From the ix's of the tips and fjords calculated 
above and the harmonic measure we form the partition sum [10, 11] 

Since the set can be conjugated to a circle, each tip (or fjord) has equal probability, 
p; = 2-<n+ll, while the covering interval is given by l; = dzio, .... ,,,/dz0 = 2-n+lfa<o.·····"'-), the 
distance between neighbouring points [12] in fig. lb). The Legendre transform /(ix)= 
= - -r(q) + qix, ix= d-r(q)/dq yields the spectrum of fig. 2. 

As expected for aggregates with harmonic measure [13], this spectrum passes through 
the point (1, 1): the information dimension D1 equals on. In the present context this can be 

2~~~~~~~~~~~~~~---. 
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Fig. 2. Fig. 3. 

Fig. 2. - The f(a) curve for the Julia set in fig. 1. The values of a.min, amax are calculated from the 
eigenvalues of the fixed points z0 , z11 respectively. 

Fig. 3. -Thef(a) curves for the first three steps in the inverse period tripling sequence: Zc is iterated 
into a fixed point, into a 3-cycle, and into a 9-cycle. The corresponding values (see (1

)) of c are: 
- 0.228115 -1.115142i, - 0.00148215 - 0.836948i, - 0.017893 - 0.784231i. Note that amax-+ 00 , 

indicating that the ends of fjords are screened by a phase transition. 
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verified by a simple calculation. The information dimension is an average over ai, which, at 
the n-th level of the resolution, is given by 

(6) 

When calculating the a-values (5) we should, in principle, be able to use almost any point z as 
starting point. For the hairy sets studied here the critical point, Zc, is on the Julia set and 
evaluating (5) for backwards iterates of Zc we find 

J_ = 1 + lim 1 loglJ<") (zc) - zl . 
D1 n-~ 2" log2 

(7) 

As mentioned above, if the Julia set is connected, iterates of the critical point Zc are 
bounded, so the information dimension tends to 1. If iterates of Zc escape to infinity, the Julia 
set falls apart into Cantor dust, and the information dimension is less than one. 

What features of the above analysis are insensitive to particulars of the model, and are 
likely to be shared with physical fractal aggregates? We expect only the part of the f(a) 
spectrum corresponding to the tips to be experimentally robust. The tip with amin is always 
given by the fixed point z0 • As is clear from the explicit expression (lb) for z0 , CJ.min is 
insensitive to small changes in the parameter c. On the other hand, the value of Cl.max' given 
by the most screened fjord, is very sensitive to minute changes of parameter, because any 
high order unstable cycle may become close to marginal stability, with the corresponding a 
growing without bound. Cl.max~ oo makes q(T) or .f(a) nonanalytic. This can be interpreted as 
a «phase-transition» (14-17]. In particular (as explained in ref. (14, 18]), l!amax = dq/dT = 0 
implies that q(T) undergoes a phase transition at - T =DH (the Hausdorff dimension) with 
q( T) = 0 for T ~ - DH, and q( T) a smooth function of T for T > - DH. Physically, a~ oo means 
that the corresponding fjords are screened and completely inactive (19]. 

To stress this point, we exhibit an example of such phase transition by following the 
series of reverse period triplings (1

), with Zc falling onto the fixed point after 3 iterations, 
onto the unstable 3-cycle, onto the unstable 32-cycle, and so on (denoted (n, k) = (4, 1), 
(14, 3), (40, 9), with the corresponding parameter values listed in fig. 3). The longer the 
cycle, the more marginal it is: for this particular sequence we can, using the universal period 
n-tupling theory ofref. (8, 20], estimate the stability of the 3k cycle to be of order of 1 + cl'ifa, 
181131-10. The corresponding a is proportional to tk and grows without bound. The results 
are shown in fig. 3. The tip-phase part of the f(a) spectrum from (amin' 0) up to (1, 1) is 
basically the same for the three members of the sequence, as well as for a differently 
branched set of :fig. 2. However, in the fjord phasef(a) varies wildy, Cl.max diverges, and the 
slow convergence characteristic of phase transitions (14, 18] makes an accurate determina
tion of the Hausdorff dimension difficult. From a practical point of view it is not important 
whether Cl.max is infinite, or just very large: we shall refer to either situation loosely as a 
«phase transition». We expect the unboundedness of a to be a generic feature of hairy Julia 
sets and, by analogy, of some fractal aggregates. In other words, probabilistic diffusion is 
likely to leave behind inactive fjords, completely screened from the diffusive field. 

In conclusion, we have utilized the Julia sets to develop some intuition about the f(a) 

(1) This is;a generalization of the reverse ld chaotic band doublings in the same sense that period n
tuplings of ref. [20, 8] are complex generalizations of the Feigenbaum a and approaches the same 
universal limit as the corresponding sequence of period n-tuplings [21]. 
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spectra of fractal aggregates. The f(rx) spectra of Julia sets suggest that only the small rx's 
(those which measure the accumulation at tips) are experimentally measurable, while the 
large rx's (those corresponding to the fjords) are noisy and experimentally inaccessible. This 
screening of fjords can manifest itself as a phase transition at the Hausdorff dimension. In 
practice the f(rx) spectrum should be reliable and easiest to measure for rx's up to rx = 1. 

* * * 
We have profited from discussions with A. AHARONY, Y. POMEAU and J. MYRHEIM. We 

gratefully acknowledge the most pleasant bitnet exchanges with I. PROCACCIA, who has 
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