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ABSTRACT

A cycle expansion method is applied to calculation of power spectrum of chaotic one-dimensional maps. It is shown
that the broad—band part of the spectrum can be represented as a diffusion constant of some auxiliary process,
and this constant is then represented in terms of periodic orbits. Accuracy of the method is also considered.

1. INTRODUCTION

Chaotic oscillations have broad—band power spectrum, and this is possibly the easiest way to recognize them in
experiments. However, when chaos is studied theoretically (numerically), other characteristics (like, e.g., Lyapunov
exponents) are more convenient, firstly, because they are, contrary to the power spectrum, invariants of the motion,
secondly, because they are easier to calculate. The aim of this paper is to extend recent methods of calculation
invariant properties of chaos to the case of power spectrum. We show how the power spectrum of chaotic discrete
one—dimensional mapping may be represented through the properties of periodic orbits.

It is known that the periodic orbits are everywhere dense in chaotic attractors and may be considered as a sceleon
of chaos. Recently an efficient method of cycle expansion was proposed1 , which allows to represent different
characteristics of chaotic motion through the properties of periodic orbits2 . Below we apply this method to study
of power spectrum. First, we present the cycle expansion method for calculation of the diffusion constant3. Then
we show how the power spectrum may be represented as a diffusion constant. Finally, we discuss cases of simple
and complex chaotic dynamics.

2. RECYCLING DIFFUSION

Let us consider a diffusion process, driven by a one—dimensional map

Xi+l = f(x) (la)
Wt+1 = w+q(x), w0=O. (ib)

Here the first equation is assumed to generate a chaotic process, which acts in the second equation as an external
"random" force. Diffusion properties of the variable w are described with the logarithm of the generating function:

Q() = lim log < (2)—+oo I
Using this function we can calculate drift velocity and diffusion constant:

dQ(O) . <Wj> d2Q(O) . <W?>—<Wt>2= lim = lim . (3)
d,@ t—oo I d/32 t-oo t

In order to find Q(/3) let us define an operator C:

C(y, x) = 5(y — x)
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which allows to represent the generating function as

<e >=Jdxdyet(y_xt)p(x) (4)

where p(x) is initial probability distribution density. Comparing (2) and (4), we conclude that is the leading
eigenvalue of Ct. This means that z = eQ0) is the smallest root of the equation

det(1 — zr) = 0. (5)

Representing determinant through the trace formula gives

det(1 — zC) = exp{tr log(1 — zr)] = exp{— LtrC] (6)

where tr =

Here J:• is a set of all fixed points of the mapping f(x), w2 - corresponding value of w and A is multiplicator of
the fixed point. As a result we obtain the equation for determining Q(/3) in the form

S(Q, i3) = exp[- iieiw;i1 = 0. (7)

S(Q, /3) is the Selberg zeta function. First note that for = 0 the operator C is the Frobenius—Perron operator
with the leading eigenvalue equal to 1. This means that S(O, O)=O. Differentiating (7) we get

d SQ_ S$$+2Q$SQfl+QSQQ—
SQ

The Selberg zeta function may be represented as a product of Ruelle zeta functions. Using the formula

I1-A11 =10Ak
we can rewrite (7) as

S(Q,/3) =

where

cl(Q, /3) = exp(- E

it is known that zero — order Ruelle zeta function (o and Selberg zeta function have the same root, so both can be
used to determine diffusion constant.

Ruelle zeta function (below we shall use notation R(Q, 3) =,j1) can be simply expressed through characteristics
of prime cycles of the map f. Suppose that a fixed point i .T belongs to the orbit of a prime cycle p with length

so that n = rn. Then we use the fact that the Lyapunov number is multiplicative along a trajectory and the
diffusing variable w is additive:

A11 = lAIr e' =
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Also taking into account that there are exactly n, different fixed points of f' that give the same contribution, we
get

00 j3 Q
R = exp(_(e )r) fl[i-

p r—1 pEP

where

ii,— Ap
and P is a set of all prime cycles of the mapping f. The zeta function may be represented as a power series

II [1 — t(Q, /3)] = 1 + (_i)kjjj
pEP P1 Pk

with a sum over all distinct nonrepeating combinations of prime cycles. Then the derivatives (8) are expressed as

— (1)k(w, +...+wpk)(IAP1...ApkI)1
d/3 (_1)k(np1 + ... + npk)(IAplApkI)

and a similar, but more complicated expression for d2Q/d/32.

3. POWER SPECTRUM AS A DIFFUSION CONSTANT

Consider a mapping
Xj1 = f(xt) (9)

which produces a chaotic sequence x1 , X2, . . . , XN. Our goal is to calculate the power spectrum of some observable
4, (x). Let us define Fourier transform as

s(w, N) = ei27wk(xk)

and average it:

< s(w, N)12 >= N (1 — C(m))ei2mrn=-N

where
C(m) =< qf(xk)q(xkm)>

is a correlation function. Generally, power spectrum consists of broad band noise S(w) and of discrete spectrum
D(w):

< Is(w, N)12 > NS(w) + N2D(w).

Let us complement the mapping (9) with

t+1 = ei2rw +4(x), o = 0. (10)

Then
'N ei2Ns(_w, N)

and
< I'NI2 > NS(w) + N2D(w). (11)

Comparing (11) with (2),(3), we see that S(w) is nothing else as diffusion constant for quantity , and D(w) is the
drift term.
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4. ZETA FUNCTION FOR POWER SPECTRUM

The main difficulty in application of cycle expansion technique of Sect.2 to calculation of power spectrum is that
generally , unlike w in (ib) is not additive along a trajectory. As one can see from (10), is always multiplied by
exp(i2irw) and this does not allow to express zeta function through prime cycles. However, for rational frequencies
we can reduce the system (9),(1O) almost exactly to the system (1).

Consider a rational frequency w = l/q. We can rewrite (9),(1O) as

Xq = f(x) (12a)

'i+q 4t + (Xt,W) (12b)

where
(x1,w) = (xj)ei2+ (xt+i)ei2_ + . . . + '(+q—i)

is Fourier transform of the sequence qS(xt), ...,q(xt+q_i). Now (12) coincides with (1) and all the machinery of
cycle expansion may be used to compute power spectrum density for frequency w as a diffusion constant (albeit
is complex variable, for application of formulae of section 1 it can be splited into real and imaginary parts). Note
also that in order to obtain proper scaling of the spectrum the diffusion constant for the eq.(12) must be divided
by q. We shall do this by multiplying Q in the zeta function by q.

4.1 Complete binary tree

Let us start with the map, whose symbolic dynamics is described by full (0,1) binary tree (i.e. all sequences of "0"
and "1" are possible). As an example we shall use in this subsection a skewed tent map

fI \_i' ax if 0<x<a1,
13

Jkx)— --j(1—x) if

For this map the correlation function was calculated by Grossmann and Thomae4:

1 2—a
C(m) =< (xt— < x >)(x+m— < x >) >=

The power spectrum is
S(w) = 61(a— 1)(a(a — 2)(1 + cos2irw) + 2)' (14)

and we shall compare this exact solution with the values obtained from the cycle expansion.

Consider first zero frequency w = 0. In this case Ruelle zeta function

R = (1 — to)(1 — t)(1 — t)(1 — = 1 —t — t1 — ['or 1011]...

consists of main terms and curvature corrections, and calculation of diffusion constant is straightforward. Figure
shows that when using Ruelle zeta function convergence is exponential, while Selberg zeta function gives faster
superexponential convergence.

For non zero frequencies w we must consider zeta functions of higher iterates of the mapping f. We shall show now
that these zeta functions may be expressed in terms of prime cycles of the map f. Consider first the case q = 2.

The mapping f2 is described with 4 symbols (a, b, c, d) which correspond to fixed points of f2 labeled in the old
(0,1) representation as a = 00, b = 11, c = 01, d = 10. Now the zeta function is

R2 = (1
— ta)(1 — tb)(l— 1)(1 — td)(l — tab)...
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Consider the term
I — exp(/3a _ 2Qfla) exp(/3oo —2Qnoo)
a —

I1'aI AooI

Note that IA00I = Aol2, n00 = 1 and soo = S(xo) — ç5(xo) = 0, so

ta(Q, ii) = i(Q, /)

Also, tb(Q,/3) = t?(Q,I:3). Now mention that = —d and IAI = IAdI = IA01I, so 1(Q,,8) = td(Q, —fi) ioi(Q,8).
This means that the product (1 —t)(1 — id) does not contribute to the first derivative S (indeed, periodic motion
does not contribute to drift velocity) so as far as zeta function and its second derivative with respect to /3 is
considered, we can write

(1 - ta)(1 _ tb)(1 - t)(1 - id) = (1 - t(Q, O))(1 _ t(Q, O))(1 _ toi(Q, 3))2

Analogously, one can easily find that each primary cycle ofthe mapping f with odd period gives term (1 —t(Q, 0))
while cycles of even period appear in pairs and give term (1 —t,,(Q,13))2. So the zeta function for the mapping f2
that we need for calculation of power spectrum at frequency w = 1/2 has the form

R2 fJ (1 —t(Q,i3)2 fT (1 —t(Q,0) (15)
PEPe pEP0

where Pe and Po are sets of prime cycles with even and odd periods, respectively. From this formula we see that
only cycles with even periods contribute to the power spectrum at frequency w= 1/2. Representation of R2 as
a power series gives shadowing similar (but not exactly the same) as for R, the leading term comes from period 2
cycle "01".

Consider now an arbitrary rational frequency w = l/q. We show how it's zeta function may be represented through
prime cycles of the mapping f. The prime cycles of fq can be divided into two sets

(1) cycles which are multiples of prime cycles of the map f

(2) cycles which are prime cycles of the map f

Consider a prime cycle p' of the map fq of the type 1 , its length being n,i. If it is a multiple of a cycle p of the
map I with length np, then flp qnpi and j repetitions of the cycle p give exactly the cycle p'. It is easy to see
that for this cycle c,,' = 0:

qni—1 np—i j—i n—1 j—i

'I = ei2xk > ei2r? i2rjE = > ei2r? e2'1 = 0

and IA'I = IAI', sO (1 — t(Q,/3)) = (1— t(Q,0)).

Cycle p' of the map fq of type 2 appears simultaneously with q other cycles belonging to the same trajectory of
the mapping f (for example, for f3 fixed points labeled by "001", "010" and "100" appear as three different prime
fixed points). For these cycles the quantities n have the same absolute value, but phases are shifted by 2irl/q:

—i2,rin=e q n=1,...,q

So we have >n n = 0 and IiI2 = = I'qI2' and as far as only zeta function and its second derivative over /3 are
considered, we can write

(1 —t7,(Q,/3)) = (1 _t(Q,/3))
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Fig. 1. Power spectrum for skewed tent map (13)
with a = 2.5 from the Selberg zeta function for all
rational frequencies w = l/q, q < 14. Solid line -
analytical formula (14).

Finally, we can represent zeta function as

i() = (1 _t(Q,3)) fl (1 -i(Q,O)), j = lcm(n,q)
(16)

PEPq PEP\1'q

where 1cm means least common multiple and 72q a set of all prime cycles with periods q, 2q, 3q. ...

As we can see from Eq.(16), that to the power spectrum at frequency w = p/q only cycles with periods q, 2q, ...
contribute, all cycles with other periods are "filtered out" . From the other point of view, cycle with period q gives
contribution only to the power spectrum at the frequencies 0, 1/q, 2/q, ...,(q — 1)/q, i.e. at the harmonics of the
cycles' "frequency".

We illustrate this section with example of computation of power spectrum for the tent map (13)(Fig.1). In the
Fig.2 we illustrate convergence for the Selberg and Ruelle zeta functions.

4.2 More complicated symbolic dynamics
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Fig.2. Errors in determining spectrum Fig.1 versus
length of maximal used cycle, pluses -w = 0, squares
- w = 1/2, other symbols from top to bottom corre-
spond to frequencies 1/3, 1/4, ..., 1/14.
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Fig.3. Power spectrum for a pruned symmetric tent
map with a = (1 + /)/2. No analytic formula for
spectrum is available.
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It is known that when symbolic dynamics is described by a subshift of a finite type, cycle expansion gives good
convergence. Figure 3 shows power spectrum calculation for a symmetric tent map with pruning _OO. In this case
the equation (16) works well.

Some difficulties arises when symbolic dynamics leads to qualitative changes in power spectrum. For example, the
tent map x1 = 1 — alxtl for a = has two nonoverlaping bonds. The system is no more mixing and in the
power spectrum a delta —peak at = 1/2 appears. In symbolic dynamics only sequences having "1" at all odd or
at all even places are allowed. Let us focus our attention on the frequency w = 1/2 and on the zeta function R2
(15). Now the set of cycles with odd periods is empty (except for the fixed point "1" ,and it also disappears for
a < v') and

R2= fJ(1—i(Q,8))2 (17)
pE Pe

However, straightforward differentiation of R2 does not give correct result: the drift term vanishes and the
diffusion constant diverges. The reason is that the mapping f2 is not mixing and has two symmetric attractors
(indeed the zeta function (17) is a product of two zeta functions for these attractors). the probability distribution
function for does not tend to Gaussian hump as t —÷ oo, but instead to two symmetric humps, these humps
are drifting away from the origin in opposite directions (that is why the drift term for R2 vanishes). In order to
describe the power spectrum for w = 1/2 correctly, we must take one hump. This corresponds to considering one
of the symmetric attractors of the map f2. In terms of zeta function this means that we must consider square root
of zeta function (17):

R(2)' II (1 —t(Q,i3))
pE P

From this zeta function correct values of discrete and continuous components of the power spectrum at w = 1/2
are obtained as the drift term and the diffusion constant.

5. CONCLUSION

We have presented the method for calculating the power spectrum of chaotic motion through the properties of
periodic orbits. It is worth to mention that sometime the term "spectrum of chaotic motion" is used in a different
sense, meaning the spectrum of eigenvalues of the Frobenius—Perron operator. These eigenvalues have some relation
to the power spectrum, because they give the asymptotics of the correlation function. However, because the power
spectrum is not an invariant (it depends on the observation function q(x)), it cannot be calculated exactly from
the invariant characteristics of the Frobenius—Perron operator.
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