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Abstract.
This article discusses the existence of solitary electromagnetic waves trapped

in a self-generated Langmuir wave and embedded in an infinitely long circularly
polarized electromagnetic wave propagating through a plasma. From the
mathematical point of view they are exact solutions of the 1-dimensional
relativistic cold fluid plasma model with nonvanishing boundary conditions.
Under the assumption of traveling wave solutions with velocity V and vector
potential frequency ω, the fluid model is reduced to a Hamiltonian system. The
solitary waves are homoclinic (grey solitons) or heteroclinic (dark solitons) orbits
to fixed points. By using a dynamical systems description of the Hamiltonian
system and a spectral method, we identify a great variety of solitary waves,
including asymmetric ones, discuss their disappearance for certain parameter
values, and classify them according to: (i) grey or dark character, (ii) the number
of humps of the vector potential envelope and (iii) their symmetries. The solutions
come in continuous families in the parametric V − ω plane and extend up to
velocities that approach the speed of light. The stability of certain types of
grey solitary waves is investigated with the aid of particle-in-cell simulations
that demonstrate their propagation for a few tens of the inverse of the plasma
frequency.

PACS numbers: 52.35.Sb, 52.38.Kd

1. Introduction

The excitation of long-lived solitary waves during the interaction of high-intensity laser
pulses with plasmas is a topic with applications and of theoretical interest. As multi-
dimensional particle in cell (PIC) simulations have shown, these waves form behind
the laser pulse and they consist of electron density depressions with a trapped intense
electromagnetic field oscillating at a frequency well below the laser frequency [1–5].
Solitary waves can propagate towards the plasma-vacuum interface where the stored
electromagnetic energy is radiated away in the form of low-frequency electromagnetic
bursts [2], a process recently detected in the laboratory [6]. Bright spots in optical
plasma images with the same polarization as the laser pulse have been attributed to
the formation of such solitons [7]. These waves can evolve to a state named postsoliton,
that has also been observed in the laboratory with proton imaging techniques [8–11].

The propagation of electromagnetic solitary waves has been intensively
investigated within the cold, relativistic, one-dimensional fluid approximation [12–22].
Restricting attention to circularly polarized travelling wave solutions, with velocity V
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and frequency ω, yields a pair of second order differential equations that governs the
dynamics of the electrostatic potential φ and the amplitude of the vector potential a.
Hence, the system describes a Langmuir and an electromagnetic wave coupled by the
nonlinear terms arising from the perturbation of the density and the relativistic mass.
It admits solitary waves with vanishing (VBC) and nonvanishing (NVBC) boundary
conditions and, even though the governing equations are not completely integrable,
they are commonly referred to as solitons.

For VBC, a → 0 and φ → 0 as x → ±∞, a soliton is interpreted as a light
wave which is trapped in a self-generated plasma wave [13]. They have been classified
according to the number of zeros of the vector potential profile, p, see Ref. [17]. They
are commonly referred to as bright solitons and their stability has been analyzed
too [4, 18, 20, 23–28]. In [17], the existence of such solutions is discussed in the
parametric V − ω plane and p = 0, 1, 2... families of solitons are identified. Some of
these families end at certain velocity values where the ion density profile shows a cusp
at the center of the soliton. The soliton breaking has been proposed as a mechanism for
particle acceleration in high-intensity laser plasma interaction [17] and it was observed
in PIC simulations for solitons with V = 0 and overcritical amplitude [15]. Solitons
with VBC in warm [20] and magnetized plasmas [16,22] have been studied too.

On the other hand, three different solutions with NVBC are possible [19, 21]: (i)
grey solitons (a→ a0 and φ→ 0 as x→ ±∞), (ii) dark solitons (a→ ±a0 and φ→ 0
as x → ±∞) and (iii) shock waves (a → a0 and φ → 0 as x → −∞ and a → 0
and φ → φ0 as x → +∞). The asymptotic values a0 and φ0 are related to the two
parameters V and ω. The branch of shock waves splits the V −ω plane in two different
regions where either dark or grey solitons exist. Branches of solutions are found and
they break down at increasing a0 due to divergence of the electron density [19,21].

As we will see, the grey and dark solitons with NVBC can be interpreted as
a localized modulation in a long circularly polarized electromagnetic wave coupled
with a plasma wave. Even though the circularly polarized wave is susceptible to
the relativistic Raman and the modulational instabilities [29], the analysis of these
solitary structures is fully justified. First, the present work extends the discussion
about solitary waves with NVBC, that until now was limited to the narrow velocity
range, 0 < V/c < 0.051 [19, 21]. Second, the solitary waves could play a role in
processes that are faster than the inverse of the parametric instability growth rate.
We also point out that any damping mechanism, not included in the present analysis
for simplicity, could reduce or suppress these instabilities.

From the mathematical point of view, the problem of finding solitons reduces,
through the traveling wave ansatz, to that of finding orbits of an associated
Hamiltonian system for a and φ consistent with the boundary conditions of the fluid
model for each type of soliton. The Hamiltonian system is four dimensional, time-
reversible and autonomous. It admits four fixed points that, for brevity, will be
denoted by the letter Q and the value of φ and a inside brackets. Only three of them,
Q±0 = (0,±a0) and Q1 = (φ0, 0), play a role when discussing the existence of solitary
waves. Orbits that are asymptotic to an equilibrium as x→ ±∞ are called homoclinic
connections, while orbits that connect two distinct equilibria in the limits x→ ±∞ are
termed heteroclinic connections (see [30] for a review of homoclinic orbits in reversible
systems). Therefore, grey solitons, dark solitons and shock waves correspond to the
connecting orbits Q±0 → Q±0 , Q+

0 → Q−0 and Q±0 → Q1 respectively.
Existence and robustness under variations in V and ω of such connecting orbits

can be directly inferred by simple geometrical arguments from the theory of dynamical
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systems, with a critical role played by the properties of the equilibria of the system
and in particular their linear stability. Previous works [19,21] studied the parametric
domain where Q±0 is a saddle-center, with eigenvalues λ1,2 = ±α, λ3,4 = ±iβ, and
they found solutions in the velocity range 0 < V/c < 0.051.

Here, we extend the analysis to velocities up to V/c = 1, and specifically in regions
of the parametric domain where Q±0 is a saddle-focus, i.e. its eigenvalues are of the
form ±(α ± iβ). It is well known [31] that homoclinic connections of a saddle-focus
in Hamiltonian systems do generally exist and are robust against small perturbations
of the Hamiltonian. Therefore one expects them to appear in continuous families in
the V − ω plane. Moreover, existence of such a homoclinic orbit, for instance one
that corresponds to a one-hump soliton, implies existence of infinitely many of them,
corresponding to solitons with a different number of humps [31]. Taking into account
these insights from the theory of dynamical systems, we numerically identify new
families of single and multi-hump solitons of the grey and dark varieties that can be
interpreted as counterparts to the branches reported for VBC [17]. We also report,
for the first time, asymmetric solitons in this system and explain the disappearance
of certain families of solutions as parameters are varied.

The organization of the paper is as follows. In section 2 the system of equations
that governs the dynamics of the solitons is revisited, while its fixed points and their
possible connecting orbits are discussed in section 3. Section 4 describes the spectral
algorithm [32] that we have used to find homoclinic and heteroclinic orbits, as well as
some optimizations carried out for our specific problem. The numerically computed
families of dark and grey, symmetric and asymmetric solitons are presented in section
5. In section 6 the stability of certain types of grey solitons is investigated with the
aid of particle-in-cell (PIC) simulations. The conclusions are summarize in section 7
where the similarities and differences with the VBC waves are stressed.

2. Dynamical equations

This section briefly summarizes the theory of one-dimensional circularly polarized
solitons (see [12, 17, 33] for a detailed discussion). The plasma is assumed to be cold
and composed of electrons and ions, denoted by the subscript α = e, i respectively.
It is convenient to use length, time, velocity, momentum, vector and scalar potential,
and density normalized over c/ωpe, ω

−1
pe , c, mαc, mec

2/e and n0 respectively. Here

n0, mα and ωpe = (4πn0e
2/me)

1/2 are the unperturbed density, the rest mass and the
electron plasma frequency. Using this notation the Maxwell (in the Coulomb gauge)
and plasma equations read

∆A− ∂2A

∂t2
− ∂

∂t
∇φ = neve − nivi (1a)

∆φ = ne − ni (1b)

∂nα
∂t

+∇ · (nαvα) = 0 (1c)

∂Pα

∂t
− vα × (∇×Pα) = −∇ (εαφ+ γα) (1d)

where A and φ are the vector and scalar potential, Pα ≡ pα+εαA, γα ≡ (1+|pα|2)1/2

and pα and vα ≡ pα/γα are the kinetic momentum and the fluid velocity respectively.
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For convenience the dimensionless parameter εα ≡ (qαme)/(emα) has been introduced
(qe = −e and qi = e are species charges).

Taking ∂y = ∂z = 0, the Coulomb Gauge immediately gives A = A⊥ where ⊥
denotes the direction perpendicular to x. The transverse component of (1d) yields

P⊥α = 0. We also take all the variables to be functions of ξ = (x− V t)/
√

1− V 2 and
assume a circularly polarized vector potential

Ay + iAz = a(ξ)e
i(kx−ωt)√

1−V 2 (2)

Here, V is the group velocity of the solitary wave, k is the wavevector and ω is the
frequency in a frame moving with the solitary wave. With the above assumptions,
equation (1c) and the longitudinal component of (1d) can be integrated. Imposing the
boundary conditions a = ±a0, φ = 0, nα = 1 and pxα = 0 as x → −∞, the kinetic
momentum, energy and the density of each species are functions of just the potentials
φ and a. For instance, the densities and the γ factors are given by

nα(φ, a) =
V (ψα − V rα)

(1− V 2)rα
(3)

γα(φ, a) =
ψα − V rα

1− V 2
(4)

with ψα ≡ Γα − εαφ, rα ≡
[
ψ2
α − (1− V 2)(1 + ε2αa

2)
]1/2

and Γα = (1 + ε2αa
2
0)1/2.

For brevity we write εi → ε and for the numerical calculation we set ε = 1/1836.
Substituting in (1a) and (1b) yields [19,21]

a′′ =

[
V

(
1

re
+

ε

ri

)
− ω2

]
a (5a)

φ′′ = V

(
ψe
re
− ψi
ri

)
(5b)

and V = ω/k, where the prime denotes derivative with respect to ξ. We remark
that, for solutions described by equation (2), the group velocity of the solitary wave V
should be equal to the phase velocity ω/k. Solutions with different velocities require
the addition of a relative phase in equation (2) [19,21].

System (5a)-(5b) describes the dynamics of localized electromagnetic modulations
trapped by a self-generated Langmuir wave embedded in a infinitely long
electromagnetic wave. Introducing the momenta Pa = (1 − V 2)a′ and Pφ = −φ′,
it can be written as a fourth order Hamiltonian system with Hamiltonian

H(a, Pa, φ, Pφ) =
1− V 2

2

[(
Pa

1− V 2

)2

+ ω2a2

]
− 1

2
P 2
φ + V

[
re(a, φ) +

ri(a, φ)

ε

]
(6)

We also note that the conditions r2α > 0 imply the following restriction on φ [34]√
(1 − V 2)(1 + a2) − Γe < φ <

1

ε

(
Γi −

√
(1 − V 2)(1 + ε2a2)

)
(7)
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3. Fixed points and connecting orbits

3.1. Fixed points and their stability

The fixed points are obtained by setting the righthand side of (5a)- (5b) equal to zero
and, for brevity, they will be denoted by Q(φ, a) (assuming φ′ = a′ = 0 as ξ → ±∞).
We note that only orbits connecting the fixed points Q±0 = (0,±a0) are consistent with
the previously imposed boundary conditions. Hence, Q±0 and their stability properties
play an important role when discussing the presence of solitary waves in the full fluid
system.

3.1.1. Fixed points Q±0 . One readily verifies that Q±0 = (0,±a0) is a fixed point of
system (5a)-(5b) if the following dispersion relation is satisfied

ω2 =
1

Γe
+

ε

Γi
(8)

Its physical interpretation is evident when we express (8) as a function of the
wavevector kLF and the frequency in the laboratory frame ωLF [17, 21]

ω2
LF = k2LF +

1

Γe
+

ε

Γi
(9)

that is the normalized dispersion relation of a pure transverse electromagnetic wave
with relativistic effects and the ion motion. Note that equation (8) has a solution
within the range 0 < ω2 < 1 + ε.

The stability of Q±0 is determined by the eigenvalues of the Jacobian of system
(5a)-(5b). In the V − ω plane there exist 3 different regions of stability; for any given
ω, Q±0 is a saddle-center if V < VSC , a center if VSC < V < VSF and a saddle-focus
if V > VSF . The velocities VSC and VSF are (see Appendix 7 and figure 1)

VSC ≡

√
1 +

[2a0(1 − ε2)ΓeΓi]
2

(Γ3
i + εΓ3

e)2 − [Γ3
i (Γ

2
e + a2

0) + εΓ3
e(Γ

2
i + ε2a2

0)]2

(10)

VSF ≡

√
1 −

[
2a0(1 − ε2)ΓeΓi

Γ3
i (Γ

2
e + a2

0) + εΓ3
e(Γ

2
i + ε2a2

0)

]2

(11)

Note that VSF ∼ VSC → 1 as a0 → ∞ (ω → 0) and VSF → 1 and
VSC → ε/(1− ε+ ε2) as a0 → 0 (ω2 → 1 + ε).

3.1.2. Fixed point Q1. System (5a)-(5b) also admits the fixed point Q1 = ((Γ0i −
Γ0e)/(1 + ε), 0). Since orbits must connect Q1 to Q±0 , we need to enforce the same
value of the invariant (equation (6)) at both fixed points. This yields

VS =

[(
1− εa20

2ΓeΓi

)2

−
(

1 + ε

Γi + εΓe

)2
]−1/2

εa20
2ΓeΓi

(12)

which gives an explicit relation between the velocity of the wave and the asymptotic
value a0, plotted in figure 1. As a0 → 0 (ω2 → 1 + ε) one has VS → ε/(1 − ε + ε2).
Appendix 7 shows that Q1 is a saddle-center for velocities given by (12) and, in
principle, shock waves are possible in the range ε/(1− ε+ ε2) < V < 1. Shock waves
belong to the parametric domain where Q±0 is a saddle-center, see figure 1, and will
not be studied in the present work (see [19] and [21]).
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3.1.3. Fixed point Q2. The system has an additional fixed point Q2 for velocities V
greater than

v ≡ Γi + εΓe
1 + ε

√
(Γi + εΓe)2 − (1 + ε)2

(1 + ε)2Γ2
eΓ

2
i − (Γi + εΓe)2

(13)

(see appendix 7). As Q±0 and Q2 must share the same value of H for a connection to
exist, a condition similar to (12) can be obtained, which cannot be fullfilled for any
value of the parameters and therefore heteroclinic connections involving Q2 and Q±0
are not possible (see Appendix 7).
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Figure 1. Characteristic velocity curves and Q±
0 stability regions in the V − ω

plane. The velocities VSC(ω) and VSF (ω) (solid lines) split the plane in three
regions where Q±

0 has different stability. Along the curve VS(ω) (dashed line)
shock waves are possible. The inset shows a detail close to V ∼ 1 where both
VSF and VS approach 1 as ω → 0.

3.2. Connecting orbits

We now turn to the discussion of the conditions under which heteroclinic and
homoclinic connections, and therefore solitons of the fluid system (1a)-(1d) are
expected to exist. We will need to recall well known facts from the theory of
dynamical systems (see [30], for example) and introduce the notion of the stable
(unstable) manifold W s

i (Wu
i ) of a fixed point Qi, as the set of forward (backward) in

ξ trajectories that terminate at Qi. A heteroclinic (homoclinic) connection from Qi

to Qj (to itself) lies on the intersection of the unstable manifold of Qi and the stable
manifold of Qj (Qi).

Stable and unstable manifolds are complicated objects with intriguing structure
and their visualization can become a formidable task (see [35] for a review of methods).
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Here it will be enough to consider the dimensionality of stable and unstable manifolds,
as this dictates whether or not they are in general expected to intersect. We note that
dynamics of the 4-dimensional system (5a)-(5b) are constrained to a 3-dimensional
energy-manifold by conservation of the invariant H, equation (6). The intersection of
stable and unstable manifolds has to take place within this energy-manifold.

We first discuss homoclinic connections involving Q±0 . When Q±0 is a saddle-
center, both its stable and unstable manifolds are 1-dimensional and are, in general,
not expected to intersect in 3-dimensional space. If they do intersect, they necessarily
have to be the same from uniqueness of solutions. A homoclinic connection is therefore
not generic, in the sense that it requires the condition W s

0 = Wu
0 which can only

be fullfilled for specific V and ω values. Hence the homoclinic connections in the
saddle-center case are expected to occur in branches in the V −ω plane. However, the
existence of a continuous spectrum of single-hump solitons when Q±0 is a saddle-center
has been suggested for VBC [18] and NVBC [19, 21] boundary conditions. Unless
further restrictions are imposed, such a continuous spectrum has to be interpreted
as a numerical artifact, only valid within the accuracy of long-time integration of
system (5a)-(5b). Nevertheless, singular cases could arise. For instance, at the V = 0
case where the dynamics is 2-dimensional, it can be proved analytically that standing
solitary wave solutions exist within a continuous ω range [15].

In the saddle-focus case on the other hand, W s
0 and Wu

0 are 2-dimensional and
are in general expected to intersect transversally along a 1-dimensional curve in the
3-dimensional energy-manifold. Therefore we expect homoclinic solutions to exist
generically in the V −ω plane. Furthermore it is well known that, for given parameters,
if one such transverse intersection exists then there exist infinitely many, which have
been shown to form a local, complete Horseshoe structure [31]. In our case this implies
that for any one-hump soliton we can find an associated family of multi-hump solitons
for any given V and ω [36].

The symmetry properties of (5a)-(5b) help us deduce more properties of the
connecting orbits. Equations (5a)-(5b) are invariant under the reflection symmetry,
a→ −a, a′ → −a′. As a result, for any homoclinic Q+

0 → Q+
0 connection there exists

an identically shaped Q−0 → Q−0 one. Note that, since we impose inhomogeneous
boundary conditions, we cannot have reflection invariant connections. Moreover,
reflection symmetry allows us to carry many of the results available for homoclinic
orbits over to heteroclinic orbits involving Q+

0 and Q−0 (dark solitons); the two
equilibria can be considered as a single equilibrium in a reduced system in which
a is identified with −a and in which heteroclinic connections become homoclinic [36].
Therefore we can expect heteroclinic orbits in the saddle-focus parametric regime to
occur generically. Furthermore, the Q+

0 → Q−0 connection has an identically shaped
Q−0 → Q+

0 counterpart.
System (5a)-(5b) is also time-reversible, that is invariant under simultaneous

change of sign of ξ and the generalized momenta Pφ, Pa. As a result, homoclinic orbits
can either be symmetric (self-dual, φ(ξ) = φ(−ξ), a(ξ) = a(−ξ)) or come in pairs of
asymmetric orbits related by time-reversal. Similarly, heteroclinic connections Q+

0 →
Q−0 have to be either antisymmetric functions of ξ (φ(ξ) = φ(−ξ), a(ξ) = −a(−ξ))
or come in asymmetric pairs, related by ξ-reversal. Note that the antisymmetric
heteroclinic solitons are associated with the combined action of ξ-reversal and
reflection. Asymmetric homoclinic and heteroclinic orbits in ξ-reversible Hamiltonian
systems are well studied [30], but to our knowledge they appear here for the first time
in the context of relativistic solitons, see section 5. The addition of a perturbation
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that breaks the conserved quantity H but preserves the reversibility would destroy
asymmetric solutions [30].

For later use, we introduce the so-called symmetric section S : a′ = φ′ = 0, which
is in a sense a symmetry hyperplane of the system, as any point in it is left invariant
under ξ-reversal. Symmetric homoclinic orbits have to intersect S [30]. As we will see
in section 5 symmetric homoclinic orbits can disappear through a mechanism referred
to as coalescence [30], as a result of which the stable and unstable manifolds fail to
intersect on the symmetric section S.

4. Numerical algorithm

Due to time reversibility, the computation of symmetric homoclinic or antisymmetric
heteroclinic orbits of (5a)-(5b) involves the solution of a boundary value problem on
the semi-infinite interval (−∞, 0). Within the regime where Q±0 is a saddle-center and
the unstable manifold is one-dimensional, previous works truncate this interval and
consider the linearized dynamics close to the fixed points, solving for the parameter
values in the V −ω plane in which the boundary value problem is satisfied [12,17,19,21].
For the saddle-focus case, where the local unstable manifold is a 2-dimensional plane,
one would also need to solve for the initial condition in this plane, for instance by
parametrizing it by a polar angle [37].

Here we implement the rational spectral collocation algorithm of Ref. [32] that
avoids both the truncation of the domain and the introduction of an additional
parameter. Let us consider the system u′′ = f(u) with u ≡ (a, φ)T and the
components of f given by the right-hand sides of (5a)- (5b). Assuming a fast enough
approach of the solutions to the asymptotic values u → u± as ξ → ±∞ [38], the
variables can be expanded as a sum of orthogonal rational functions

ui(ξ) =

M+1∑
k=0

Cik cos
[
k cot−1(ξ)

]
, i = 1, 2 (14)

The basis functions suggest the following choice for the M collocation points

ξj = cot

(
jπ

M + 1

)
1 ≤ j ≤M (15)

that are complemented by the two following collocation points ξ0 = +∞ and
ξM+1 = −∞. The coefficients Cik are given by

Cik =
2

(M + 1)c̄k

M+1∑
m=0

ui(ξm)

c̄m
cos

(
mkπ

M + 1

)
0 ≤ k ≤M + 1 (16)

with c̄m = 2 if m = 0 or m = M + 1 and c̄m = 1 if 1 ≤ m ≤M .
Computing the second derivative from (14) and substituting the results in

u′′ = f(u) yield 2M nonlinear algebraic equations

M+1∑
k=0

DjkCik + fi[u(ξj)] = 0 1 ≤ j ≤M, i = 1, 2 (17)

where

Djk ≡ k

k cos

(
kjπ

M + 1

)
+

2 sin
(
kjπ
M+1

)
tan

(
jπ
M+1

)
 sin4

(
jπ

M + 1

)
(18)
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We also have 4 boundary conditions

M+1∑
k=0

Cik = u+i (19a)

M+1∑
k=0

(−1)kCik = u−i (19b)

with 1 ≤ i ≤ 2.
Since the system is autonomous, every translation on ξ of its solution is also a

solution. This indeterminacy can be removed by adding the phase condition∫ +∞

−∞
< u′(ξ)− ũ′(ξ),u′′(ξ) >= 0 (20)

where < ·, · > denotes the l2 inner product and ũ the previous orbit on a branch.
Solutions occuring at branches ω = ω(V ) need this extra condition to adequately vary
the parameter. This would be the case of the branches found for V < VSC [19, 21].
However, as we will see, for V > VSF the solutions exist continuously in the V − ω
plane. In this case equations (17) and (19a)-(19b) constitute a set of 2(M+2) equations
for the 2(M + 2) coefficients Cik that can be solved for fixed values of ω and V . We
used a Newton-Raphson algorithm with its Jacobian calculated analytically to speed
up the convergence.

Since system (5a)-(5b) does not include the first derivatives of the variables (φ, a)
on the right-hand side, we have directly computed the second derivative. This is a
difference from the general scheme given in reference [32] that allows us to divide
by two the number of coefficients. Note also that for asymmetric solutions all the
coefficients must be calculated whereas in the case of symmetric or antisymmetric
solutions just one half of the coefficients are needed (for instance symmetric grey
solitons are even solutions and Ci,2k+1 = 0).

The variable ξ can be stretched according to ξ → Lξ. Here L is a scaling factor
that can be used to optimize accuracy of the solution. Although some strategies
have been discussed to find a proper value of L [39], in practice it is chosen by
experimentation with different L for a given value of M (as suggested in reference [40]).
We found L = 6 to be an adequate value for our numerical computations and a
number of collocation points M ∼ 300. The initial guess for the Newton-Raphson
algorithm can be obtained from the intersection of stable and unstable manifolds,
as discussed in section 5. For asymmetric solutions it can also be built up from
pieces of symmetric solutions of different parity, smoothed by dropping the high
order coefficients. Similarly, guesses for multi-hump solutions can be built up from
single hump solutions of appropriate shape. Once we have a good initial guess, the
spectral algorithm gives an accurate solution that can be used as initial guess for other
parameter values.

We finally remark that the accuracy of the solutions can be checked by testing the
spectral convergence: a plot of the logarithm of the coeficients Cik versus the order
k should decay linearly. This is an advantage as compared to the truncation of the
interval methods where the error is controlled by the initial distance to the fixed point
which is fixed arbitrarily. Such a criterion allows to separate true from false solutions,
specially when the fixed point has eigenvalues with small real part (in absolute value)
and the solutions approach slowly to their asymptotic values.
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5. Numerical results

5.1. Families of solitary waves

Figure 2 depicts our numerically computed grey soliton solutions, belonging to a
certain family. In panel 2(a) we also plot the curves VSC and VSF . The panels (d)-
(f) display a representative solution at the parameter values V = 0.8 and ω = 0.11,
just above the frequency ω ∼ 0.10545 where these solutions disappear for V = 0.8.
The densities and the γ factors are computed from equations (3) and (4) respectively
(note the different scales for γe and γi). We point out that for this particular family
of solutions the ion density and the potential φ exhibit one hump at the center
of the solution. The physical meaning of the solitary waves with NVBC can be
undestood with the aid of figure 3 where we plotted electric field and electron momenta
components. The longitudinal electric field Ex and momentum pxe vanish outside the
solitary wave that, as the plots of Ey and pye show, can be intepreted as a localized
modulation of an infinitely long circularly polarized electromagnetic wave (Ez and pze
are not presented).

Even though our fluid description of the plasma cannot take into account discrete
particle effects like acceleration or heating, it is interesting to compute the maximum
value of the electron and ion kinetic energy within the solitary wave

Emaxα = max[mαc
2(γα − 1)] (21)

For the previously discussed family, these quantities are plotted in figure 2(b) and 2(c)
(z-axis is in a logarithmic scale). The electron fluid can reach energies of the order of
hundreds of MeV and ions several tens of MeV. We also note that, for a fixed value
of ω, the largest energy is reached at the lowest admissible V value.

Figure 4 corresponds to a different family of grey solitons. In this case both
potentials present a minimum at the center of the soliton and the electron density
has one central peak. The panel 4(a) shows the existence domain found by randomly
varying the parameters V and ω (as we also did for figure 2 ). However, by fixing
one of the parameters, using a small step for the other and initializing the algorithm
with the solution obtained at the previous iteration, we were able to find solitary
waves of the same type for parameter values outside the region indicated in 4(a) (see
figure 4(d)- 4(f)). As the frequency decreases, the potential develops a cusp shape at
the center of the wave and the algorithm requires an initial condition closer to the
real solution to ensure convergence. Hence, the boundary exhibited in figure 4(a) is
a numerical artifact as we will also confirm in section 5.2. We remark that potential
profiles with a cusp shape have also been reported in solitary waves with VBC for
parameter values close to the wavebreaking [17].

A representative family of dark solitons, or heteroclinic connections Q+
0 −Q

−
0 , is

shown in figure 5. Note that its existence domain encompasses that of the grey solitons
of figure 2. Panels 5(d)-5(f) display a particular solution of this family of dark solitons
at the parameter values ω = 0.08 and V = 0.8. The potential φ has one central hump
and, as opposed to the grey solitons, the vector potential is an antisymmetric function.
The peak electron and ion kinetic energies are of the order of hundreds and tens of
MeV, respectively.

These three families of solitary waves provide some of the simplest examples of
solitary solutions admitted by the system (5a)-(5b). However, due to the fact that the
fixed point is a saddle-focus and the system is Hamiltonian and reversible, multi-hump
and asymmetric solutions can exist too. A few examples of grey multi-hump solutions
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Figure 2. (Color online) A family of one-hump symmetric grey solitons.

with ω = V = 0.8 are displayed in figure 6(a)- 6(d). Panels 6(e) and 6(f) correspond
to the density and γ factor of the solution with 5 humps. The potential φ exhibits
one central hump, while the vector potential has multiple humps. These solutions
are characterized by a cavity with a depression of the electron density in which an
electromagnetic wave can be trapped. On the other hand, grey and dark asymmetric
solitons are shown in figure 7(a) and 7(b), respectively. For completeness, Figure 7(c)
also shows a multi-hump dark soliton (heteroclinic connection). Solutions in panels
7(a) and 7(c) are plotted in panel 7(d), where a projection on the phase space φ − a
together with the fixed points Q±0 is shown. Note that the asymmetric grey soliton
connects Q+

0 −Q
+
0 , although it passes close to Q−0 (see the inset).

5.2. Coalescence and disappearance of solitary waves in parameter space

A striking feature of the families of solitary waves we identified is that they fill in
regions with a well defined, within our numerical precision, boundary in the V − ω
plane. As we have seen in section 3, homoclinic and heteroclinic orbits lie on the
interesection of stable and unstable manifolds of fixed points. This suggests that
certain families of orbits can cease to exist when the corresponding manifolds fail to
intersect in the neighborhood of the solitary solution. The mechanism responsible for
loss of intersection in our case is known as coalescence [30,41,42] and we now turn to
its detailed description, through a numerical experiment involving the disapperance
of a member of the family of grey solitons shown in figure 2.

An approximation to the unstable manifold of Q+
0 can be computed by integrating
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equations (5a)-(5b) with initial condition

[φ φ̇ a ȧ] = [0 0 a0 0] + σv1 (22)
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Figure 5. (Color online) A family of one-hump antisymmetric dark solitons

where v1 is the real part of one of the unstable eigenvectors of Q+
0 , associated with an

eigenvalue λ̃ = λ̃r+ iλ̃i, λ̃r > 0. Here σ is a small parameter that controls the position
of the initial condition on the plane spanned by the unstable eigenvectors. Computing
one thousand outward spiraling orbits with σ = 0.001×exp[(2πλ̃r)/(jλ̃i)], j = 1...1000
then results in an approximation of the unstable manifold. The stable manifold was
computed similarly, sprinkling initial conditions along the stable eigendirection and
integrating backward in ξ.

The stable and unstable manifolds are best visualized by keeping track of their
intersection with a Poincaré (surface of) section P, a 3-dimensional surface in our
4-dimensional phase space. Here we will be interested in symmetric homoclinic
connections, which always intersect the symmetric section S. It will therefore be
important to choose a Poincaré section that contains S, for instance φ̇ = 0.

Figure 8 shows the first four intersections of our numerical approximation to the
stable and unstable manifolds of Q+

0 with P, for three different values of ω with fixed
V = 0.8. For frequency value ω = 0.11 (panel 8a) the stable and unstable manifolds
intersect transversely and two homoclinic orbits (grey solitons) exist, marked by the
points of intersection I1 (belonging to the homoclinic orbit in figure 2(d)- 2(f)) and
I2 (belonging to the orbit in figure 8(d)). At ω ' 0.10545, I1 and I2 coalesce into a
single solution and the manifolds become tangent. For ω . 0.10545 the unstable and
stable manifolds do not intersect and the family of homoclinic orbits shown in figure
2 ceases to exist for V = 0.8. Note however that different families of solitary waves
do exist for ω . 0.10545, V = 0.8; in figure 8 we only plot a part of the stable and
unstable manifolds and therefore more intersections can still take place. This becomes
apparent when comparing, for instance, figures 2 and 4 showing that a family of grey
solitons can extent beyond the range of existence of another family.
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Figure 6. Some examples of symmetric multi-hump grey solitons.
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A similar analysis was carried out for the second type of grey solitons, figure
4. We computed the stable and unstable manifolds for parameter values close to
the the boundary exhibited in figure 4(a) and we did not observed a tangency
close to the homoclinic orbit, confirming that the existence boundary is a numerical
artifact. Therefore, the Poincaré analysis is a useful tool to distinguish real boundaries
from numerical artifacts. Note also that visualization of the stable and ustable
manifolds of the fixed points on a Poincaré surface of section is a very effective way of
generating initial guesses for the numerical computation of homoclinic and heteroclinic
connections through the spectral method of section 4.
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Figure 8. Panels (a)-(c) show the intersection of the stable (black) and the
unstable (grey) manifolds with the Poincaré section φ̇ = 0. Panel (d) is the grey
soliton corresponding to the point labelled I2.

6. Stability of the solitary waves

Even though an exhaustive analysis of the stability of the solitary waves is beyond
the scope of the present work, we sketch out here some relevant aspects. As
previously mentioned, the electromagnetic circularly polarized wave is susceptible
to the relativistic Raman and the modulational instabilities that would ultimately
destroy the solitary wave. However, since the growth rates of these instabilities are
controlled by the amplitude of the electromagnetic wave (a0 in our dynamical system)
and the plasma density (related to the parameter ω), certain parameter values could
allow long distance propagation of the solitons.

To test the stability of the solitary waves we show a couple of 1-dimensional
simulations with the PIC code Calder [43]. This method does not prove stability
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of the solutions in a strict mathematical sense but it provides an insight into the
dynamics. We took a computational domain equal to 60× 2π

√
1− V 2/ωV (in c/ωpe

units) that is large enough to assume periodic boundary conditions and we used one
million of cells with ten particles per cell. The code was initialized with a grey solitary
wave of the type presented in figure 4.

Figure 9 shows the evolution of the electric field component Ex of a grey solitary
wave with V = 0.95 and ω = 0.95. For this high value of the frequency the ions are
almost immobile and the asymptotic value of the amplitude of the wave is a0 ∼ 0.48.
It propagates undistorted during a few tens of ω−1pe , until the part of the solution
with vanishing Ex (corresponding to the infinitely long circularly polarized wave)
becomes unstable due to the Raman instability. However, a solitary wave with a
lower frequency value ω = 0.5 (a0 = 3.88) presents different dynamics (see figure 10).
For this second case the solitary wave develops an instability at its trailing edge and it
radiates part of its energy away. A similar instability appears in multi-hump solutions
with VBC [44]. These examples reveal that, without collision and for a cold plasma
model, our solutions present an unstable character. However, a dissipation mechanism
could reduce or even supppress the Raman instability, thus allowing the propagation
of the solitary waves for longer distances.
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Figure 9. PIC simulation initialized with a grey soliton of the type shown in
figure 4 with V = ω = 0.95.

7. Conclusions

Solitary waves excited by the interaction of a high-intensity laser with a plasma have
been observed in laboratory experiments [6–11] and particle-in-cell (PIC) simulations
[1,2,5,45]. Although many theoretical works have been carried out on these structures
(see [21] for a review), the parametric domain where the fixed point that controls the
NVBC is a saddle-focus was unexplored. In our study of this regime we were able to
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Figure 10. PIC simulation initialized with a grey soliton of the type shown in
figure 4 with V = 0.95 and ω = 0.5.

exhibit new ranges of solutions including grey and dark solitons.
We recall that, for VBC, the solutions are organized in the ω−V plane on a set of

infinitely many branches [17]. Each branch is characterized by the number of humps
(or number of nodes) of the vector potential and it ends at a certain point due to the
wavebreaking of the soliton. The potential is always a symmetric function whereas
the vector potential can be either symmetric or antisymmetric.

For NVBC we have shown that there is a continuum of solutions in the ω − V
plane. Grey solitary waves with a symmetric potential and vector potential and dark
solitary waves with symmetric potential and antisymmetric vector potential can be
found for a wide range of parameters. This is a natural extension of the VBC case
with the number of nodes being even or odd, respectively. Multi-hump solutions are
also possible for any value of parameters for which a single-hump orbit exists. Further,
asymmetric single and multi-hump solutions exist, consistent with symmetry breaking
in a conservative, time-reversible system.

In addition to being an important channel of laser-pulse energy transformation,
solitary waves have been propossed as interesting candidates for photon and particle
acceleration schemes [13, 17]. PIC simulations with an overcritical amplitude soliton
showed electron acceleration during the nonlinear wavebreaking [15] whereas ion
acceleration has been detected during the postsoliton expansion [4]. In [17], the
authors reported wavebreaking of the solitary wave at the critical velocity determined
by the end of the branch of the solutions in the ω − V plane. It was estimated that
ions could reach an energy value of the order of 70 MeV. Similarly, in the present work
we have presented domains of existence in the ω − V plane and we have shown that
coalescence of solitary waves (in parameter space) leads to disappeance of families
of solutions. Coalescence was visualized by keeping track of the stable and unstable
manifolds of a fixed point by means of a Poincaré surface of section.
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We point out that the stability of solitons with VBC has been studied in the
past [4, 18, 20, 23–28]. In particular, 1-dimensional numerical fluid simulations with
immobile ions showed that single hump solutions are stable whereas the multi-hump
solutions suffer the Raman instability [27, 44]. On the other hand, 2-dimensional
simulations revealed that all solutions are unstable and the tranverse dynamics always
dominates the longitudinal one [28]. Our PIC simulations initialized with a grey
solitary wave showed that some of them could propagate undistorted during a few
tens of ω−1pe , just before the circularly polarized wave suffers the Raman instability.
However, other grey waves radiate a portion of their energy from the trailing edge,
similarly to the multi-hump solutions with VBC [44]. Since these are just a few
examples, a complete stability analysis would requiry the study of other types of
solutions (dark waves, asymmetric, multi-humps etc) in the whole ω−V plane. Adding
warm plasma effects or a collision term would be relevant too.

Besides existence and stability, the question about how to excite solitary waves
with NVBC remains open. However, soliton-like electromagnetic modes with VBC
have been observed during laser plasma interaction [46]. Our preliminary PIC
simulations on solitary wave excitation show that the interaction between a solitary
wave with VBC and a long circularly polarized laser pulse can produce a solitary wave
with NVBC. These simulations will be presented in a future work.
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Appendix. The existence and stability of the fixed points

Let us write (5a)-(5b) as dx/dξ = f(x) with x = [φ φ̇ a ȧ]. Fixed points are given by
φ̇ = ȧ = 0 and the solutions of

[
V

(
1

re
+

ε

ri

)
− ω2

]
a = 0 (A.1)

V

(
ψe
re
− ψi
ri

)
= 0 (A.2)

whereas the stability depends on the eigenvalue of the Jacobian matrix

J =
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The four eigenvalues of J at the fixed pointsQ±0 can be written as λ21−4 = −δ±
√

∆
with

δ(V, a0) ≡ 1− V 2

2V 2

(
1

Γ3
e

+
ε

Γ3
i

)
> 0 (A.4)
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2V 2
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i + ε2a20

Γ3
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(V ΓeΓi)4
(A.5)
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Fixed point Q+
0 (or Q−0 ) is a saddle-focus if ∆ < 0, a saddle-center if

√
∆ > δ > 0

and a center if 0 <
√

∆ < δ. The conditions
√

∆ = δ and ∆ = 0 yield the velocities
(10) and (11) respectively.

The eigenvalue of the Jacobian matrix at Q1 for V = Vs are

λ1,2 = ±ω

√
(ΓeΓi − 1)(Γe − Γi)2

2(Γe − Γi)2 + (Γi + εΓe)2a20
(A.6)

λ3,4 = ±i(1 + ε)2

√
Vs(1− V 2

s )

[(Γi + εiΓe)2 − (1− V 2
s )(1 + ε)2]

3/2
(A.7)

and clearly the fixed point Q1 is a saddle-center (note that Γe,Γi > 1).
On the other hand, the existence and stability analysis of Q2 requires some

auxiliar operations. From (A.1) and assuming −Γe < φf < Γi/ε, one gets

a2f =
ψ2
e − ψ2

i

ψ2
i − ε2ψ2

e

(A.8)

and by substituting in (A.2).

G(φf ) ≡ 1

ΓeΓi
− V

ψeψi

√
ψ2
i − ε2ψ2

e

ψ2
i − ε2ψ2

e − (1− V 2)(1− ε2)
= 0 (A.9)

where we introduced the subscript f to denote that we are dealing with a fixed point.
Note that restriction (7) together with a2 > 0 in (A.8) show that solutions of (A.9)
must lie on the intervals

φmin2 ≡ −
Γe − Γi
1 + ε

< φf <
(1− ε2)V 2

2ε(Γi + εΓe)
≡ φmax2 (A.10)

The solutions of (A.9) can be discussed taking into account some properties of
the function G(φf ) and its derivative:

dG

dφf
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V
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√
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e
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i − ε2ψ2

e − (1− V 2)(1− ε2)
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ψ2
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e − (1− V 2)(1− ε2)
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(ψi − εψe)

]
(A.11)

In particular we are interested in the zeros of this derivative. The factor inside the
squared root vanishes at φf = φmax2/V

2 > φmax2, that it is outside the physical
domain. On the other hand, the roots of the term inside the braces are given by the
zeros of the cubic equation

8(Γi + εΓe)

1− ε2
ε3φ3

f−3(3+V 2)ε2φ2
f +3(Γi−εΓe)(1+V 2)εφf−(Γi−εΓe)2V 2 +ε(1−V 2)ΓeΓi = 0 (A.12)

For discussing the solutions of (A.9) within the domain φmin2 < φf < φmax2,
we first note that G(0) = 0, corresponding with the fixed points Q±0 . One also has
the asymptotic behaviours G → −∞ as φf → φmax2 and G(φmin2) > 0 (< 0) for
velocities less (greater) than v (see (13)). The analysis of its derivative shows that
G has 0 or 1 extreme for V < v and therefore (A.9) has one solution in this regime
(Q±0 ). On the other hand, for V > v it always has one extreme, at say φ∗f , with

G(φ∗f ) ≥ 0. Therefore, if G(φ∗f ) > 0, (A.9) has two solutions and, in addition to Q±0 ,

there is another fixed point that we call Q2. One also checks that Q2 and Q±0 lie in
different manifolds given by (6). Hence, heteroclinic connections among Q2 and Q±0
are not possible.
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