Appendix F

Implementing evolution

F.1 Koopmania

The Koopman operator action on a state space function \(a(x)\) is to replace it by its downstream value \(t\) later, \(a(x) \rightarrow a(x(t))\), evaluated at the trajectory point \(x(t)\):

\[
[K^t]a(x) = a(f^t(x)) = \int_M dy K^t(x,y) a(y) \\
K^t(x,y) = \delta(y-f^t(x)).
\] (F.1)

Given an initial density of representative points \(\rho(x)\), the average value of \(a(x)\) evolves as

\[
\langle a \rangle (t) = \frac{1}{|\rho_M|} \int_M dx \int_M dy a(f^t(x)) \rho(y) = \frac{1}{|\rho_M|} \int_M dx [K^t]a(x) \rho(x) \\
= \frac{1}{|\rho_M|} \int_M dx \int_M dy a(y) \delta(y-f^t(x)) \rho(x).
\]

The ‘propagator’ \(\delta(y-f^t(x))\) can be interpreted as belonging to the Perron-Frobenius operator (16.10), so the two operators are adjoint to each other,

\[
\int_M dx [K^t a](x) \rho(x) = \int_M dy a(y) \left[L^t \rho \right](y).
\] (F.2)

This suggests an alternative point of view, which is to push dynamical effects into the density. In contrast to the Koopman operator which advances the trajectory by time \(t\), the Perron-Frobenius operator depends on the trajectory point \(x\) in the past

\[
\frac{d}{dt} a(x) = 0.
\] (F.4)

The finite time Koopman operator (F.1) can be formally expressed by exponentiating the time-evolution generator \(A\) as

\[
K^t = e^{tA}.
\] (F.5)

The generator \(A\) looks very much like the generator of translations. Indeed, for a constant velocity field dynamical evolution is nothing but a translation by time \(\times\) velocity:

\[
e^{tV} a(x) = a(x + tv).
\] (F.6)

The Perron-Frobenius operators are non-normal, not self-adjoint operators, so their left and right eigenvectors differ. The right eigenvectors of a Perron-Frobenius operator are the left eigenvectors of the Koopman, and vice versa. While one might think of a Koopman operator as an ‘inverse’ of the Perron-Frobenius operator, the notion of adjoint is the right one, especially in settings where flow is not time-reversible, as is the case for dissipative PDEs (infinite dimensional flows contracting forward in time) and for stochastic flows.

The family of Koopman’s operators \(\{K^t\}_{t \in \mathbb{R}}\) forms a semigroup parameterized by time

(a) \(K^0 = 1\)

(b) \(K^{t+t'} = K^t K^{t'}\) \(t, t' \geq 0\) (semigroup property).

With the generator of the semigroup, the generator of infinitesimal time translations defined by

\[
A = \lim_{t \to 0^+} \frac{1}{t} (K^t - 1).
\]

(If the flow is finite-dimensional and invertible, \(A\) is a generator of a group). The explicit form of \(A\) follows from expanding dynamical evolution up to first order, as in (2.5):

\[
A a(x) = \lim_{t \to 0^+} \frac{1}{t} \left(a(f^t(x)) - a(x) \right) = v_t(x) \partial_x a(x).
\] (F.3)

Of course, that is nothing but the definition of the time derivative, so the equation of motion for \(a(x)\) is

\[
\frac{d}{dt} a(x) = 0.
\] (F.4)

The Perron-Frobenius operators are non-normal, not self-adjoint operators, so their left and right eigenvectors differ. The right eigenvectors of a Perron-Frobenius operator are the left eigenvectors of the Koopman, and vice versa. While one might think of a Koopman operator as an ‘inverse’ of the Perron-Frobenius operator, the notion of adjoint is the right one, especially in settings where flow is not time-reversible, as is the case for dissipative PDEs (infinite dimensional flows contracting forward in time) and for stochastic flows.

The family of Koopman’s operators \(\{K^t\}_{t \in \mathbb{R}}\) forms a semigroup parameterized by time

(a) \(K^0 = 1\)

(b) \(K^{t+t'} = K^t K^{t'}\) \(t, t' \geq 0\) (semigroup property).

With the generator of the semigroup, the generator of infinitesimal time translations defined by

\[
A = \lim_{t \to 0^+} \frac{1}{t} (K^t - 1).
\]

(If the flow is finite-dimensional and invertible, \(A\) is a generator of a group). The explicit form of \(A\) follows from expanding dynamical evolution up to first order, as in (2.5):

\[
A a(x) = \lim_{t \to 0^+} \frac{1}{t} \left(a(f^t(x)) - a(x) \right) = v_t(x) \partial_x a(x).
\] (F.3)

Of course, that is nothing but the definition of the time derivative, so the equation of motion for \(a(x)\) is

\[
\frac{d}{dt} a(x) = 0.
\] (F.4)
As we will not need to implement a computational formula for general $e^{\mathcal{A}}$ in what follows, we relegate making sense of such operators to appendix F.2. Here we limit ourselves to a brief remark about the notion of “spectrum” of a linear operator.

The Koopman operator \mathcal{K} acts multiplicatively in time, so it is reasonable to suppose that there exist constants $M > 0$, $\beta \geq 0$ such that $\|\mathcal{K}\| \leq M e^{\beta t}$ for all $t \geq 0$. What does that mean? The operator norm is defined in the same spirit in which we defined the matrix norms in sect. J.2: We are assuming that no value of $\mathcal{K}^r(x)$ grows faster than exponentially for any choice of function $r(x)$, so that the fastest possible growth can be bounded by $e^{\beta t}$, a reasonable expectation in the light of the simplest example studied so far, the exact escape rate (17.30). If that is so, multiplying \mathcal{K} by $e^{\psi t}$ construct a new operator $e^{\psi t}\mathcal{K} = e^{(\mathcal{A} - \beta t)}$ which decays exponentially for large t, $\|e^{\psi t}\mathcal{K}\| \leq M$. We say that $e^{\psi t}\mathcal{K}$ is an element of a bounded semigroup with generator $\mathcal{A} - \beta t$. Given this bound, it follows by the Laplace transform

$$\int_0^\infty dt \ e^{-s t} e^{\mathcal{A} t} = \frac{1}{s - \mathcal{A}}, \quad \text{Re } s > \beta,$$

that the resolvent operator $(s - \mathcal{A})^{-1}$ is bounded (“resolvent” = able to cause separation into constituents)

$$\left\| \frac{1}{s - \mathcal{A}} \right\| \leq \int_0^\infty dt \ e^{-s t} M e^{\beta t} / s - \beta.$$

If one is interested in the spectrum of \mathcal{K}, as we will be, the resolvent operator is a natural object to study. The main lesson of this brief aside is that for the continuous time flows the Laplace transform is the tool that brings down the generator in (16.29) into the resolvent form (17.24) and enables us to study its spectrum.

F.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operators \mathcal{K}^t. We have introduced the generator of the semigroup (16.27) as

$$\mathcal{A} = \left. \frac{d}{dt} \mathcal{K} \right|_{t=0}.$$

If we now take the derivative at arbitrary times we get

$$\left(\frac{d}{dt} \mathcal{K} \psi \right)(x) = \lim_{\eta \to 0} \left[\frac{\psi(f^{\eta}(x)) - \psi(f^t(x))}{\eta} \right]$$

which can be formally integrated like an ordinary differential equation yielding

$$\mathcal{K}^t = e^{\mathcal{A} t}. \quad (F.8)$$

This guarantees that the Laplace transform manipulations in sect. 16.5 are correct. Though the formal expression of the semigroup (F.8) is quite simple one has to take care in implementing its action. If we express the exponential through the power series

$$\mathcal{K}^t = \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathcal{A}^k. \quad (F.9)$$

we encounter the problem that the infinitesimal generator (16.27) contains non-commuting pieces, i.e., there are i, j combinations for which the commutator does not satisfy

$$\left[\frac{\partial}{\partial q_i}, \psi(x) \right] = 0.$$

To derive a more useful representation, we follow the strategy used for finite-dimensional matrix operators in sects. 4.2 and 4.3 and use the semigroup property to write

$$\mathcal{K}^t = \prod_{m=1}^{\lfloor t/\delta t \rfloor} \mathcal{K}^{\delta t}$$

as the starting point for a discretized approximation to the continuous time dynamics, with time step δt. Omitting terms from the second order onwards in the expansion of $\mathcal{K}^{\delta t}$ yields an error of order $O(\delta t^2)$. This might be acceptable if the time step δt is sufficiently small. In practice we write the Euler product

$$\mathcal{K}^t = \prod_{m=1}^{\lfloor t/\delta t \rfloor} (1 + \delta t \mathcal{A}_{00}) + O(\delta t^2) \quad (F.10)$$

where

$$\left(\mathcal{A}_{00} \psi \right)(x) = \psi(f^{m\delta t}(x)) \frac{\partial}{\partial \xi} \bigg|_{\xi = f^{m\delta t}(x)}$$

the starting point for a discretized approximation to the continuous time dynamics, with time step δt. Omitting terms from the second order onwards in the expansion of $\mathcal{K}^{\delta t}$ yields an error of order $O(\delta t^2)$. This might be acceptable if the time step δt is sufficiently small. In practice we write the Euler product

$$\mathcal{K}^t = \prod_{m=1}^{\lfloor t/\delta t \rfloor} (1 + \delta t \mathcal{A}_{00}) + O(\delta t^2) \quad (F.10)$$

where

$$\left(\mathcal{A}_{00} \psi \right)(x) = \psi(f^{m\delta t}(x)) \frac{\partial}{\partial \xi} \bigg|_{\xi = f^{m\delta t}(x)}$$
As far as the \(x \) dependence is concerned, \(e^{\delta\tau\mathcal{A}} \) acts as

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 + \delta\tau v(x) \\
 x_4
\end{pmatrix}.
\]

\[
(F.11)
\]

We see that the product form (F.10) of the operator is nothing else but a prescription for finite time step integration of the equations of motion – in this case the simplest Euler type integrator which advances the trajectory by \(\delta\tau \times \) velocity at each time step.

F.2.1 A symplectic integrator

The procedure we described above is only a starting point for more sophisticated approximations. As an example on how to get a sharper bound on the error term consider the Hamiltonian flow \(\mathcal{A} = \mathcal{B} + \mathcal{C} \), \(\mathcal{B} = p_x \frac{\partial}{\partial x} \), \(\mathcal{C} = -\partial V(q) \frac{\partial}{\partial q} \). Clearly the potential and the kinetic parts do not commute. We make sense of the formal solution (F.10) by splitting it into infinitesimal steps and keeping terms up to \(\delta\tau^2 \) in

\[
\mathcal{K}_{\delta\tau} = \mathcal{K}_{\delta\tau}^0 + \frac{1}{24}(\delta\tau)^2\mathcal{B} + 2\mathcal{C}, [\mathcal{B}, \mathcal{C}] \} + \cdots,
\]

where

\[
\mathcal{K}_{\delta\tau}^0 = e^{\frac{1}{2}\delta\tau\mathcal{B}}e^{\delta\tau\mathcal{C}}e^{\frac{1}{2}\delta\tau\mathcal{B}}.
\]

The approximate infinitesimal Liouville operator \(\mathcal{K}_{\delta\tau} \) is of the form that now generates evolution as a sequence of mappings induced by (16.30), a free flight by \(\frac{1}{2}\delta\tau\mathcal{B} \), scattering by \(\delta\tau\partial V(q') \), followed again by \(\frac{1}{2}\delta\tau\mathcal{B} \) free flight:

\[
\begin{align*}
\mathcal{K}_{\delta\tau}^0 \begin{pmatrix} q \\ p \end{pmatrix} & \rightarrow \begin{pmatrix} q' \\ p' \end{pmatrix} = \begin{pmatrix} q - \frac{\delta\tau}{2}p \\ p \end{pmatrix} \\
\mathcal{K}_{\delta\tau}^0 \begin{pmatrix} q' \\ p' \end{pmatrix} & \rightarrow \begin{pmatrix} q'' \\ p'' \end{pmatrix} = \begin{pmatrix} q' - \frac{\delta\tau}{2}p' \\ p' + \delta\tau\partial V(q') \end{pmatrix}. \\
\end{align*}
\]

Collecting the terms we obtain an integration rule for this type of symplectic flow which is better than the straight Euler integration (F.11) as it is accurate up to order \(\delta\tau^2 \):

\[
\begin{align*}
q_{n+1} &= q_n - \delta\tau p_n - \frac{(\delta\tau)^2}{2}\partial V(q_n - \delta\tau p_n/2) \\
p_{n+1} &= p_n + \delta\tau \partial V(q_n - \delta\tau p_n/2).
\end{align*}
\]

The Jacobian matrix of one integration step is given by

\[
M = \begin{pmatrix} 1 & -\delta\tau/2 \\ 0 & 1 \end{pmatrix}.
\]

Note that the billiard flow (8.11) is an example of such symplectic integrator. In that case the free flight is interrupted by instantaneous wall reflections, and can be integrated out.

Commentary

Remark F.1 Koopman operators. The “Heisenberg picture” in dynamical systems theory has been introduced by Koopman and Von Neumann [F.1, F.2], see also ref. [16.12]. Inspired by the contemporary advances in quantum mechanics, Koopman [F.1] observed in 1931 that \(K \) is unitary on \(L^2(\mu) \) Hilbert spaces. The Koopman operator is the classical analogue of the quantum evolution operator \(e^{i\mathcal{H}/\hbar} \) – the kernel of \(L^2(\mu, x) \) introduced in (16.16) (see also sect. 17.2) is the analogue of the Green function discussed here in chapter 31. The relation between the spectrum of the Koopman operator and classical ergodicity was formalized by von Neumann [F.2]. We shall not use Hilbert spaces here and the operators that we shall study will not be unitary. For a discussion of the relation between the Perron-Frobenius operators and the Koopman operators for finite dimensional deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows, see Lasota-Mackey [16.12] and Gaspard [1.8].

Remark F.2 Symplectic integration. The reviews [F.12] and [F.13] offer a good starting point for exploring the symplectic integrators literature. For a higher order integrators of type (F.13), check ref. [F.18].

Exercises

F.1. Exponential form of semigroup elements. Check that the Koopman operator and the evolution generator commute, \(\mathcal{K}'/K^n = \mathcal{K}'/\mathcal{K}^n \), by considering the action of both operators on an arbitrary state space function \(\alpha(s) \).
F.2. **Non-commutativity.** Check that the commutators in (F.12) are not vanishing by showing that

\[[B, C] = -p \left(\frac{\partial V}{\partial p} \frac{\partial}{\partial q} - \frac{\partial V}{\partial q} \frac{\partial}{\partial p} \right). \]

F.3. **Symplectic leapfrog integrator.** Implement (F.15) for 2-dimensional Hamiltonian flows; compare it with Runge-Kutta integrator by integrating trajectories in some (chaotic) Hamiltonian flow.

References

