Contents

Contributors .. xi
Acknowledgments ... xv

1 Geometry of chaos ... 1

1 Overture ... 3
 1.1 Why ChaosBook? ... 4
 1.2 Chaos ahead .. 5
 1.3 The future as in a mirror ... 6
 1.4 A game of pinball .. 11
 1.5 Chaos for cyclists ... 15
 1.6 Change in time .. 21
 1.7 To statistical mechanics .. 24
 1.8 Chaos: what is it good for? .. 25
 1.9 What is not in ChaosBook .. 28

résumé 28 commentary 30 guide to exercises 33 exercises 34 references 34

2 Go with the flow ... 37
 2.1 Dynamical systems .. 37
 2.2 Flows .. 42
 2.3 Computing trajectories ... 47

résumé 48 commentary 48 exercises 51 references 52

3 Discrete time dynamics ... 55
 3.1 Poincaré sections ... 56
 3.2 Computing a Poincaré section 62
 3.3 Mappings ... 63
 3.4 Charting the state space ... 67

résumé 70 commentary 71 exercises 73 references 74

4 Local stability ... 75
 4.1 Flows transport neighborhoods 75
 4.2 Linear flows .. 79
 4.3 Stability of flows .. 84
 4.4 Neighborhood volume ... 89
 4.5 Stability of maps ... 91

résumé 94 commentary 94 exercises 96 references 96
CONTENTS

5 Cycle stability
- 5.1 Stability of periodic orbits 99
- 5.2 Floquet multipliers are invariant 104
- 5.3 Stability of Poincaré map cycles 106
- 5.4 There goes the neighborhood 107
 résumé 108 commentary 109 exercises 110 references 110

6 Go straight
- 6.1 Changing coordinates 112
- 6.2 Rectification of flows 113
- 6.3 Collinear helium 114
- 6.4 Rectification of maps 119
- 6.5 Rectification of a periodic orbit 120
- 6.6 Cycle Floquet multipliers are metric invariants 121
 résumé 123 commentary 123 exercises 125 references 125

7 Hamiltonian dynamics
- 7.1 Hamiltonian flows 128
- 7.2 Symplectic group 130
- 7.3 Stability of Hamiltonian flows 132
- 7.4 Symplectic maps 134
- 7.5 Poincaré invariants 137
 résumé 138 commentary 139 exercises 142 references 143

8 Billiards
- 8.1 Billiard dynamics 145
- 8.2 Stability of billiards 147
 résumé 150 commentary 150 exercises 151 references 151

9 World in a mirror
- 9.1 Discrete symmetries 155
- 9.2 Symmetries of solutions 163
- 9.3 Relative periodic orbits 168
- 9.4 Dynamics reduced to fundamental domain 169
- 9.5 Invariant polynomials 171
 résumé 172 commentary 174 exercises 176 references 177

10 Relativity for cyclists
- 10.1 Continuous symmetries 180
- 10.2 Symmetries of solutions 189
- 10.3 Stability 194
- 10.4 Reduced state space 195
- 10.5 Method of images: Hilbert bases 201
 résumé 204 commentary 206 exercises 210 references 214

11 Charting the state space
- 11.1 Qualitative dynamics 220
- 11.2 Stretch and fold 224
- 11.3 Temporal ordering: Itineraries 227

II Chaos rules

12 Stretch, fold, prune
- 12.1 Goin’ global: stable/unstable manifolds 245
- 12.2 Horseshoes 249
- 12.3 Symbol plane 253
- 12.4 Prune danish 256
- 12.5 Recoding, symmetries, tilings 257
 résumé 260 commentary 261 exercises 263 references 264

13 Fixed points, and how to get them
- 13.1 Where are the cycles? 269
- 13.2 One-dimensional maps 273
- 13.3 Multipoint shooting method 275
- 13.4 Flows 277
 résumé 281 commentary 282 exercises 284 references 286

14 Walkabout: Transition graphs
- 14.1 Matrix representations of topological dynamics 290
- 14.2 Transition graphs: wander from node to node 292
- 14.3 Transition graphs: stroll from link to link 295
 résumé 299 commentary 299 exercises 301 references 301

15 Counting
- 15.1 How many ways to get there from here? 304
- 15.2 Topological trace formula 306
- 15.3 Determinant of a graph 309
- 15.4 Topological zeta function 313
- 15.5 Infinite partitions 315
- 15.6 Shadowing 317
- 15.7 Counting cycles 318
 résumé 321 commentary 323 exercises 324 references 327

16 Transporting densities
- 16.1 Measures 330
- 16.2 Perron-Frobenius operator 331
- 16.3 Why not just leave it to a computer? 334
- 16.4 Invariant measures 336
- 16.5 Density evolution for infinitesimal times 339
- 16.6 Liouville operator 341
 résumé 343 commentary 344 exercises 345 references 346
Volume www: Appendices on ChaosBook.org

A A brief history of chaos 767
 A.1 Chaos is born 767
 A.2 Chaos with us 772
 A.3 Death of the Old Quantum Theory 779
 commentary 782 references 783

B Linear stability 787
 B.1 Linear algebra 787
 B.2 Eigenvalues and eigenvectors 789
 B.3 Eigenspectra: what to make out of them? 796
 B.4 Stability of Hamiltonian flows 798
 B.5 Monodromy matrix for Hamiltonian flows 799
 exercises 802 references 802

C Finding cycles 804
 C.1 Newton-Raphson method 804
 C.2 Hybrid Newton-Raphson / relaxation method 805

D Symbolic dynamics techniques 808
 D.1 Topological zeta functions for infinite subshifts 808
 D.2 Prime factorization for dynamical itineraries 816

E Counting itineraries 820
 E.1 Counting curvatures 820
 exercises 821

F Implementing evolution 822
 F.1 Koopmania 822
 F.2 Implementing evolution 824
 commentary 827 exercises 827 references 828

G Transport of vector fields 830
 G.1 Evolution operator for Lyapunov exponents 830
 G.2 Advection of vector fields by chaotic flows 835
 commentary 839 exercises 839 references 839

H Discrete symmetries of dynamics 841
 H.1 Preliminaries and definitions 841
 H.2 Invariants and reducibility 848
 H.3 Lattice derivatives 851
 H.4 Periodic lattices 855
 H.5 Discrete Fourier transforms 856
 H.6 C_4 factorization 860
 H.7 C_2^r factorization 864
 H.8 Hénon map symmetries 866
 commentary 867 exercises 867 references 869

I Convergence of spectral determinants 872
 I.1 Curvature expansions: geometric picture 872
 I.2 On importance of pruning 875
 I.3 Ma-the-matical caveats 876
 I.4 Estimate of the rth cumulant 877
 I.5 Dirichlet series 879
 commentary 880 references 880

J Infinite dimensional operators 881
 J.1 Matrix-valued functions 881
 J.2 Operator norms 883
 J.3 Trace class and Hilbert-Schmidt class 884
 J.4 Determinants of trace class operators 886
 J.5 Von Koch matrices 889
 J.6 Regularization 891
 exercises 893 references 893

K Thermodynamic formalism 895
 K.1 Rényi entropies 895
 K.2 Fractal dimensions 900
 résumé 904 commentary 904 exercises 905 references 905

L Statistical mechanics recycled 907
 L.1 The thermodynamic limit 907
 L.2 Ising models 910
 L.3 Fisher droplet model 913
 L.4 Scaling functions 918
 L.5 Geometrization 921
 résumé 928 commentary 929 exercises 929 references 930

M Noise/quantum corrections 932
 M.1 Periodic orbits as integrable systems 932
 M.2 The Birkhoff normal form 936
 M.3 Bohr-Sommerfeld quantization of periodic orbits 937
 M.4 Quantum calculation of \hbar corrections 939
 references 945

S Projects 948
 S.1 Deterministic diffusion, zig-zag map 950
 references 955
 S.2 Deterministic diffusion, sawtooth map 956
Contributors

No man but a blockhead ever wrote except for money
—Samuel Johnson

This book is a result of collaborative labors of many people over a span of several decades. Coauthors of a chapter or a section are indicated in the byline to the chapter/section title. If you are referring to a specific coauthored section rather than the entire book, cite it as (for example):

Do not cite chapters by their numbers, as those change from version to version. Chapters without a byline are written by Predrag Cvitanović. Friends whose contributions and ideas were invaluable to us but have not contributed written text to this book, are credited in the acknowledgments.

Roberto Artuso
16 Transporting densities .. 329
18.2 A trace formula for flows ... 377
22.3 Correlation functions .. 446
24 Intermittency ... 481
25 Deterministic diffusion .. 511

Ronnie Mainieri
2 Flows ... 37
3.2 The Poincaré section of a flow 62
4 Local stability ... 75
6.1 Understanding flows .. 114
11.1 Temporal ordering: itineraries 220
Appendix A: A brief history of chaos 767

Gábor Vattay
24 Intermittency ... 481
Appendix B.5: Jacobians of Hamiltonian flows 799

Arindam Basu
Rössler flow figures, tables, cycles in chapters 11, 13 and exercise 13.10

Ofer Biham
29.1 Cyclists relaxation method ... 596

Daniel Borrero Oct 23 2008, soluCycles.tex
Solution 13.15

Cristel Chandre
29.1 Cyclists relaxation method ... 596
29.2 Discrete cyclists relaxation methods 601

Freddy Christiansen
13.2 One-dimensional mappings .. 273
13.3 Multipoint shooting method .. 275

Per Dahlqvist
24 Intermittency ... 481
29.3 Orbit length extremization method for billiards 605

Carl P. Dettmann
20.6 Stability ordering of cycle expansions 415

Fotis K. Diakonos
29.2 Discrete cyclists relaxation methods 601

G. Bard Ermentrout
Exercise 5.1

Mitchell J. Feigenbaum
Appendix B.4: Symplectic invariance 798

Sarah Flynn
solutions 3.5 and 3.6

Jonathan Halcrow
Example 3.4: Sections of Lorenz flow 61
Example 4.7: Stability of Lorenz flow equilibria 86
Example 4.8: Lorenz flow: Global portrait 88
Example 9.14: Desymmetrization of Lorenz flow 166
Example 11.4: Lorenz flow: a 1-dimensional return map 225
Exercises 9.9 and figure 2.5

Kai T. Hansen
11.3 Unimodal map symbolic dynamics 227
15.5 Topological zeta function for an infinite partition 315
11.5 Kneading theory ... 233
figures throughout the text

Rainer Klages
Figure 25.5

Yueheng Lan
Solutions 1.1, 2.2, 2.3, 2.4, 2.5, 9.6, 12.6, 16.1, 16.2, 16.3, 16.5, 16.7, 16.10, 17.1 and figures 1.9, 9.4, 9.8 11.5

Bo Li
Solutions 31.2, 31.1, 32.1
Acknowledgments

I feel I never want to write another book. What's the good! I can eke living on stories and little articles, that don't cost a tithe of the output a book costs. Why write novels anymore!
—D.H. Lawrence

This book owes its existence to the Niels Bohr Institute’s and Nordita’s hospitable and nurturing environment, and the private, national and cross-national foundations that have supported the collaborators’ research over a span of several decades. P.C. thanks M.J. Feigenbaum of Rockefeller University; D. Ruelle of I.H.E.S., Bures-sur-Yvette; I. Procaccia of Minerva Center for Nonlinear Physics of Complex Systems, Weizmann Institute of Science; P.H. Damgaard of the Niels Bohr International Academy; G. Mazenko of U. of Chicago James Franck Institute and Argonne National Laboratory; T. Geisel of Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen; I. Andrić of Rudjer Bošković Institute; P. Hemmer of University of Trondheim; The Max-Planck Institut für Mathematik, Bonn; J. Lowenstein of New York University; Edificio Celi, Milano; Fundação de Faca, Porto Seguro; and Dr. Dj. Cvitanović, Kostrena, for the hospitality during various stages of this work, and the Carlsberg Foundation, Glen P. Robinson, Humboldt Foundation and National Science Foundation grant DMS-0807574 for partial support.

We thank Dorte Glass, Tzatzilha Torres Guadarrama and Raeneill Soller for typing parts of the manuscript; D. Borrero, B. Lautrup, J.F. Gibson and D. Viswanath for comments and corrections to the preliminary versions of this text; M.A. Porter for patiently and critically reading the manuscript, and then lengthening by the 2013 definite articles hitherto missing; M.V. Berry for the quotation on page 767; H. Fogedby for the quotation on page 464; J. Guckenheimer for the quotation on page 7; S. Ortega Arango for the quotation on page 16; Ya.B. Pesin for the remarks quoted on page 783; M.A. Porter for the quotations on pages 7.1, 7.13, 1.6 and A.2.1; E.A. Spiegel for the quotation on page 3; and E. Valesco for the quotation on page 25.

F. Haake’s heartfelt lament on page 377 was uttered at the end of the first conference presentation of cycle expansions, in 1988. G.P. Morriss advice to students as how to read the introduction to this book, page 6, was offered during a 2002 graduate course in Dresden. K. Huang’s C.N. Yang interview quoted on page 337 is available on ChaosBook.org/extras. T.D. Lee remarks on as to who is to blame, page 37 and page 269, as well as M. Shub’s helpful technical remark on page 476 came during the Rockefeller University December 2004 “Feigenbaum Fest.” Quotes on pages 37, 127, and 334 are taken from a book review by J. Guckenheimer [1.1].

Who is the 3-legged dog reappearing throughout the book? Long ago, when we were innocent and knew not Borel measurable α to Ω sets, P. Cvitanovic asked V. Baladi a question about dynamical zeta functions, who then asked J.-P. Eckmann, who then asked D. Ruelle, The answer was transmitted back: “The master says: ‘It is holomorphic in a strip.’” Hence His Master’s Voice logo, and the 3-legged dog is us, still eager to fetch the bone. The answer has made it to the book, though not precisely in His Master’s voice. As a matter of fact, the answer is the book. We are still chewing on it.

Profound thanks to all the unsung heroes–students and colleagues, too numerous to list here–who have supported this project over many years in many ways, by surviving pilot courses based on this book, by providing invaluable insights, by teaching us, by inspiring us.