
14
Viscosity

All fluids are viscous, except for a component of liquid helium close to absolute zero in
temperature. Air, water and oil all put up resistance to flow, and a part of the money we spend
on transport by plane, ship or car goes to overcome fluid friction, and all the energy in the fuel
eventually contributes a small amount to heating the atmosphere and the sea.

It is primarily the interplay between the mechanical inertia of a moving fluid and its vis-
cosity which gives rise to all the interesting and beautiful phenomena, the whirling and the
swirling that we are so familiar with. If a volume of fluid is set into motion, inertia would dic-
tate that it continue in its original motion, were it not checked by the action of internal shear
stresses. Viscosity acts as a brake on the free flow of a fluid and will eventually make it come
to rest in mechanical equilibrium, unless external driving forces continually supply energy to
keep it moving. In an Aristotelian sense the “natural” state of a fluid is thus at rest with pres-
sure being the only stress component. Disturbing a fluid at rest slightly, setting it into motion
with spatially varying velocity field, will to first order of approximation generate stresses that
depend linearly on the spatial derivatives of the velocity field. Fluids with a linear relation-
ship between stress and velocity gradients are said to be Newtonian, and the coefficients in
this relationship are material constants that characterize the strength of viscosity.

In this chapter the formalism for Newtonian viscosity will be set up, culminating in the
formulation of the Navier-Stokes equation for incompressible fluids (compressible fluids will
be treated in chapter 17). Superficially simple, the Navier-Stokes equation is a nonlinear
differential equation for the velocity field which nevertheless continues to be a formidable
challenge to engineers, physicists and mathematicians. It is a central theme for the remainder
of this book.
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Shear viscosity in laminar (lay-
ered) flow. The fluid above the
dashed line moves slightly faster
than below and exerts a positive
shear stress �xy on the fluid be-
low. By Newton’s third law the
fluid below will exert an opposite
stress ��xy on the fluid above.

Consider a fluid flowing steadily along the x-direction with a velocity field vx.y/ which is
independent of x but may vary with y. Such a field could, for example, be created by enclosing
a fluid between moving plates, and is an elementary example of laminar or layered flow. If
the velocity field has no y-dependence there should not be any internal stresses, because the
fluid is then in uniform motion along the x-axis. If, on the other hand, the velocity grows with
y, so that its gradient is positive dvx.y/=dy > 0, we expect that the fluid immediately above
a plane y D const will drag along the fluid immediately below because of fluid friction and
thus exert a positive shear stress, �xy.y/ > 0, on this plane.
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228 PHYSICS OF CONTINUOUS MATTER

Table 14.1. Table of density and dynamic and kinematic viscosity for common substances (at the
indicated temperature and at atmospheric pressure). Some of the values are only estimates. Note that air
has greater kinematic viscosity than water, and hydrogen greater than olive oil. Glass is usually viewed
as a solid, but there are claims (not very well substantiated [Zan98]) that it flows very slowly like a liquid
over long periods of time even at normal temperatures.

T Œ ıC� � Œkg m�3� � ŒPa s� � Œm2s�1�

Hydrogen 20 0.084 8:80 � 10�6 1:05 � 10�4

Air 20 1.18 1:82 � 10�5 1:54 � 10�5

Water 20 1:00 � 103 1:00 � 10�3 1:00 � 10�6

Ethanol 25 0:79 � 103 1:08 � 10�3 1:37 � 10�6

Mercury 25 13:5 � 103 1:53 � 10�3 1:13 � 10�7

Whole blood 37 1:06 � 103 2:7 � 10�3 2:5 � 10�6

Olive oil 25 0:9 � 103 6:7 � 10�2 7:4 � 10�5

Castor oil 25 0:95 � 103 0.7 7:4 � 10�4

Glycerol 20 1:26 � 103 1.41 1:12 � 10�3

Honey(est) 25 1:4 � 103 14 1 � 10�2

Pitch 20 1:1 � 103 2:3 � 108 2 � 108

Glass (est) 20 2:5 � 103 1018 � 1021 1015 � 1018

It also seems reasonable to expect that a larger velocity gradient will evoke stronger stress.
In Newton’s law of viscosity the shear stress is simply made proportional to the gradient1,

�xy.y/ D �
dvx.y/

dy
: (14.1)

The constant of proportionality, �, is called the coefficient of shear viscosity, the dynamic
viscosity, or simply the viscosity. It is a measure of how strongly the moving layers of fluid
are coupled by friction, and a material constant of the same nature as the shear modulus for
elastic materials. We shall see later (page 300) that in compressible fluids there is also a bulk
coefficient of viscosity corresponding to the elastic bulk modulus, but that turns out to be
rather unimportant in ordinary applications.

The University of Queensland
pitch drop experiment, started in
1927. Until now eight drops have
fallen, the last on november 28,
2000, although none have actu-
ally been seen to fall. The vis-
cosity is determined to be about
2 � 108 Pa s [EDP84]. Image
courtesy Wikimedia Commons.

The viscosities of naturally occurring fluids range over many orders of magnitude (see
table 14.1 and the margin figure). Since dvx=dy has dimension of inverse time, the unit for
viscosity � is Pa s (pascal seconds). Although this unit is sometimes called Poiseuille, there
is in fact no special name for it in the standard (SI) system of units2.

Molecular origin of viscosity in gases
In gases where molecules are far apart, internal stresses are caused by the incessant molecular
bombardment of a boundary surface, transferring momentum in both directions across it. In
liquids where molecules are in closer contact, internal stress is caused partly by molecular
motion as in gases, and partly by intermolecular forces. The resultant stress in a liquid is
a quite complicated combination of the two effects, and we shall for this reason limit the
following discussion to the molecular origin of shear stress in gases.

Gas molecules move nearly randomly in all directions at speeds much higher than the ve-
locity field v.x; t /, representing the average non-random component of the molecular motion.
In steady laminar planar flow with velocity vx.y/ and positive velocity gradient dvx.y/=dy,

1In this book we use the letter � rather than � for viscosity to avoid a conflict with the shear elastic modulus.
2In the older cgs-system it used to be called poise D 0:1 Pa s.
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14. VISCOSITY 229

a molecule of mass m crossing a surface element dSy from above will carry an average mo-
mentum in the x-direction which is a little larger thanmvx.y/. Similarly, a molecule crossing
dSy from below will carry a little less thanmvx.y/. Since the same number of molecules pass
from above and below, the result will be a net transfer of momentum from the fluid above to
the fluid below.
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Layers of gas moving with dif-
ferent velocities give rise to shear
forces because they exchange
molecules with different average
velocities.

109� 1012d

H2 122 271

He 193 216

Ne 137 256

N2 65 371

O2 71 356

Ar 69 360

CO2 44 454

Air 67 368

m m

Mean free path and effective
molecular diameter, determined
from measured viscosities [2] at
20 Celsius and 1 atmosphere (in
SI-units).

To make a quantitative estimate, let the typical distance between molecular collisions in
the gas be � and the typical time between collisions � . Disregarding all factors of order
unity, a layer of thickness � above an area element dSy carries an excess of momentum in the
x-direction,

dPx � .vx.y C �/ � vx.y//��dSy � ��2
dvx.y/

dy
dSy :

The shear stress may be estimated from the transfer of this momentum per unit of time and
area, �xy � dPx=�dSy , and indeed takes the form of Newton’s law of viscosity (14.1) with
a rough estimate of the shear viscosity,

� � �
�2

�
� ��vmol: (14.2)

In the last expression we used that �=� � vmol where vmol D
p
3p=� D

p
3RT is the root-

mean-square molecular velocity. Over the years the estimate has been refined by means of
the kinetic theory of gases, leading to about half the above value [Loeb 1961]. In practice one
uses the resulting expression to determine the rather ill-defined molecular diameter from the
measured viscosity (see the margin table).

Temperature dependence of viscosity
The viscosity of any material depends on temperature. Common experience from kitchen and
industry tells us that most liquids become “thinner” when heated, indicating that the viscosity
falls with temperature. Gases on the other hand become more viscous at higher temperatures,
simply because the molecules move faster and thus transport more momentum across a surface
per unit of time.

For an ideal gas, it follows from eq. (1.11) on page 8 that the expression �� is a combi-
nations of constants, so that the viscosity becomes, � � vmol �

p
T . Thus, if the viscosity is

�0 at temperature T0, it may be estimated as

� D �0

s
T

T0
; (14.3)

at temperature T . Notice that the viscosity is independent of the pressure. Empirically, the
viscosity grows slightly faster with temperature because of molecular attraction.

Kinematic viscosity
The viscosity estimate (14.2) seems to point to another measure of viscosity, called the kine-
matic viscosity3,

� D
�

�
: (14.4)

Since the estimate, � � �2=2� , does not depend on the unit of mass, this parameter is mea-
sured in purely kinematic units4 of m2 s�1 (see table 14.1). In fluids with constant density,
it varies with temperature in the same way as the dynamic viscosity �. In an ideal gas we
have � / p=T , so that the kinematic viscosity will depend on both temperature and pressure,
� / T 3=2=p. In isentropic gases it always decreases with temperature (problem 14.1).

3The conflicting use of � for both the kinematic viscosity and Poisson’s ratio is pervasive in the literature.
4In the older cgs-system, the corresponding unit was called stokes D cm2 s�1 D 10�4 m2 s�1.
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230 PHYSICS OF CONTINUOUS MATTER

It is as we shall see below the kinematic viscosity � which appears in the Navier-Stokes
equation for the velocity field, rather than the dynamic viscosity �. Normally, we would think
of air as less viscous than water and hydrogen as less viscous than olive oil, but under suitable
conditions it is really the other way around. If a flow is driven by inflow of fluid with a certain
velocity, air behaves in fact as if it were 10–20 times more viscous than water. If instead
driven by the same external forces, air is much easier to set into motion than water because its
density is a thousand times smaller, and that is what fools our intuition.

14.2 Velocity-driven planar flow
Before turning to the derivation of the Navier–Stokes equations for viscous flow, we shall
explore the concept of shear viscosity a bit further for the simple case of planar flow. Let
us, as before, assume that the flow is laminar and planar with the only non-vanishing velocity
component being vx D vx.y; t/, now also allowing for time dependence. It is rather clear that
there can be no advective acceleration in such a field, and formally we also find .v � r/vx D
vxrxvx D 0. In the absence of volume and pressure forces, the Newtonian shear stress
(14.1) will be the only non-vanishing component of the stress tensor, and Cauchy’s dynamical
equation (12.26) on page 198 reduces to

�
@vx

@t
D f �x D ry�xy D �

@2vx

@y2
:

Dividing by the density (which is assumed to be constant) we get

@vx

@t
D �

@2vx

@y2
; (14.5)

where � is the kinematic viscosity (14.4) . This is a simplified version of the Navier–Stokes
equation, particularly well suited for the discussion of the basic physics of shear viscosity.

Case: Steady planar flow
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A Newtonian fluid with spatially
uniform properties between mov-
ing parallel plates. The veloc-
ity field varies linearly between
the plates and satisfies the no-
slip boundary condition that the
fluid is at rest relative to both
plates. The stress must be the
same on any plane in the fluid
parallel with the plates (dashed).

In steady flow the left-hand side of (14.5) vanishes, and from the vanishing of the right-
hand side it follows that the general solution must be linear, vx D A C By, with arbitrary
integration constants A and B . We shall imagine that the flow is maintained between (in
principle infinitely extended) solid plates, one at rest at y D 0 and the other moving with
constant velocity U at y D d . Where the fluid makes contact with the plates, we require it to
assume the same speed as the plates, in other words vx.0/ D 0 and vx.d/ D U (this no-slip
boundary condition will be discussed in more detail later). Solving these conditions we find
A D 0 and B D U=d such that the field between the plates becomes

vx.y/ D
y

d
U; (14.6)

independent of the viscosity. From this expression we obtain the shear stress,

�xy D �
dvx

dy
D �

U

d
: (14.7)

It is independent of y, as one might have expected, because in stationary flow the balance of
forces (and planar symmetry) requires the stress on any plane parallel with the plates to be the
same.

Copyright c
 1998–2010 Benny Lautrup



14. VISCOSITY 231

Case: Viscous friction
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A solid object sliding on a plane
lubricated surface with velocity
U is subject to a viscous drag D
opposite to the velocity.

A thin layer of viscous fluid is often used to lubricate the interface between solid objects.
From the above solution to steady planar flow we may calculate the friction force, or drag,
exerted on the body by the layer of viscous lubricant (see also section 16.4). Let the would-be
contact area between the body and the surface on which it slides be A, and let the thickness of
the fluid layer be d everywhere. If the layer is thin, d �

p
A, we may disregard edge effects

and simply multiply the planar stress (14.7) by the contact area to get the drag force,

D � �
A

d
U: (14.8)

The velocity-dependent viscous drag is quite different from the constant drag experienced in
solid friction (see section 6.1 on page 97). The decrease in drag with falling velocity makes
the object seem to want to slide “forever”, and this is what makes ice sports such as skiing,
skating, sledging and curling interesting. It is scary to brake a car on ice or to aquaplane,
because the decreasing deceleration as the speed drops makes the car appear to run away from
you. In these cases, a thin layer of liquid water acts as the lubricant.

The quasi-steady horizontal equation of motion for an object of mass M , not subject to
forces other than viscous drag opposite the direction of the velocity, becomes

M
dU

dt
D ��

A

d
U: (14.9)

Assuming that the thickness of the lubricant layer stays constant (and that is by no means
evident) the solution to (14.9) is

U D U0e
�t=� ; � D

Md

�A
; (14.10)

where U0 is the initial velocity and � is the characteristic exponential decay time for the
velocity. Integrating this expression we obtain the total stopping distance

L D

Z 1
0

U dt D U0� D
U0Md

�A
: (14.11)

Although it formally takes infinite time for the sliding object to come to a full stop, it does
so in a finite distance! The stopping length grows with the mass of the object which is quite
unlike solid friction, where the stopping length is independent of the mass.

Example 14.1 [Curling]: In the ice sport of curling, a “stone” with mass M � 20 kg is
set into motion with the aim of bringing it to a full stop at the far end of an ice rink of length
L � 40 m. The area of the highly polished contact surface towards the ice is A � 700 cm2 and
the initial velocity about U0 � 3 m s�1. From (14.11) we obtain the thickness of the fluid layer
d � 43 �m which does not seem unreasonable, and neither does the decay time � � 13 s. The
players’ intense sweeping of the ice in front of the moving stone presumably serves to smooth out
tiny irregularities in the surface, which could otherwise slow down the stone.

Case: Momentum diffusion

The dynamic equation (14.5) is a typical diffusion equation with diffusion constant equal to
the kinematic viscosity, �, also called the momentum diffusivity. In general, such an equation
leads to a spreading of the distribution of the diffused quantity, which in this case is the
velocity vx , or perhaps better, the momentum density �vx .
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Velocity distribution for a planar
Gaussian “river” in an “ocean” of
fluid.

The simplest example of a flow with momentum diffusion is a Gaussian “river”, which
starts out at t D 0 with shape vx D U exp

�
�y2=a2

�
where a is a parameter that sets the

scale for the width of the river. By direct insertion into the planar equation of motion (14.5) ,
it may be verified that the solution at time t is,

vx.y; t/ D U
a

p
a2 C 4�t

exp
�
�

y2

a2 C 4�t

�
: (14.12)

This river spreads with time but stays Gaussian, so that at time t it has width parameterp
a2 C 4�t . Although momentum diffuses away from the center of the river, the total mo-

mentum must remain constant because there are no external forces acting on the fluid. Kinetic
energy is on the other hand dissipated and ends up as heat. The apparent paradox that the ki-
netic energy can vanish while momentum stays constant is resolved in problem 14.3.

y

vx

A Gaussian “river” widens and
slows down in the course of time
because of momentum diffusion,
but retains its Gaussian shape.

At sufficiently large times, t � a2=4�, the shape of the Gaussian becomes independent of
the original width a. This is, in fact, a general feature of any bounded “river” flow: for large
times it becomes proportional to exp.�y2=4�t/, as shown in problem 14.5. The Gaussian
factor drops sharply to zero beyond y ' 2

p
�t , giving momentum diffusion a fairly well-

defined front at a distance L ' 2
p
�t from the origin of the velocity disturbance. A velocity

disturbance may similarly be characterized by the time, t ' L2=4�, it takes for it to spread
through a transverse distance L by diffusion.

In the simple case discussed here, momentum diffusion takes place orthogonally to the
general direction of motion of the fluid. Even if momentum diffuses away from the center in
the y-direction, there is no mass flow in the y-direction because vy D 0. In less restricted
flows there may be more direct competition between mass flow and diffusion. If the velocity
scale of a flow is jvj � U , it would take the time tflow � L=U for a mass of fluid to move
through the distance L. The ratio of the the diffusion time scale tdiff � L

2=� to the mass flow
time scale tflow becomes a dimensionless number, first introduced by Reynolds,

Re �
tdiff

tflow
�
UL

�
(14.13)

When this number is large compared to unity, momentum diffusion through a given distance
takes much longer time than mass flow and plays only a small role, whereas when it is small,
momentum diffusion is much faster than mass flow and dominates the flow pattern.

Case: Shear wave
Consider an infinitely extended plate in the xz-plane immersed in an infinite sea of fluid. Let
the plate oscillate in its own plane with circular frequency ! D 2�=� , so that its instantaneous
velocity in the x-direction is U.t/ D U0 cos!t . The motion of the plate is transferred to the
neighboring fluid because of the no-slip condition and then spreads into the fluid at large.

y

vx

Shape of the velocity amplitude
of a shear wave at t D 0.

By direct insertion it may be verified that the following field satisfies eq. (14.5) as well as
the no-slip boundary condition vx D U.t/ for y D 0,

vx.y; t/ D U0e
�ky cos.!t � ky/; k D

r
!

2�
: (14.14)

Evidently, this is a damped wave spreading from the oscillating plate into the fluid. Since
the velocity oscillations take place in the x-direction whereas the wave propagates in the y-
direction it is a transverse or shear wave. The wavenumber k determines the wavelength � D
2�=k D 2

p
��� , as well as the decay length of the exponential, also called the penetration

depth d D 1=k D �=2� . The wave is strongly damped and penetrates only a fraction of a
wavelength into the fluid. It is really not much of a wave.

A shear wave of frequency 1000 Hz penetrates only 71 �m in air and 18 �m in water at
normal temperature and pressure.
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14. VISCOSITY 233

Case: The Stokes layer
Consider again an infinite flat plate in the xz-plane immersed in a fluid. The fluid and plate
are initially at rest for t < 0, but at time t D 0, the plate is suddenly set into motion with
velocity U along the x-direction. The no-slip boundary condition will drag the fluid along
at the plate, and viscosity will spread its momentum into the fluid at large. The aim is to
calculate the spreading of this boundary layer with time, also called Stokes’ First Problem.

Assuming that the flow is planar with vx D vx.y; t/ and vy D vz D 0, we may use (14.5)
to find the solution. The linearity of this equation guarantees that the velocity everywhere must
be proportional to U , and since there is no intrinsic length or time scale in the definition of
the problem, the velocity field can only be of the form,

vx.y; t/ D Uf .s/; s D
y

2
p
�t
: (14.15)

The definition of the problem requires the —so far unknown—shape function f .s/ to obey
the boundary conditions f .0/ D 1 and f .1/ D 0. The factor two in the denominator is just
a convenient choice, suggested by the characteristic scale for momentum diffusion.
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The Stokes layer shape function
f .s/. The sloping dashed line is
tangent at s D 0 with inclination
f 0.0/ D �2=

p
� .

Inserting the above flow into the planar flow equation (14.5) we are led to an ordinary
second-order differential equation for f .s/,

f 00.s/C 2sf 0.s/ D 0: (14.16)

It is a first-order differential equation for f 0.s/, with the solution f 0.s/ � exp.�s2/. Integrat-
ing once more and applying the boundary conditions, the final result becomes (see the margin
figure)

f .s/ D
2
p
�

Z 1
s

e�u
2

du D erfc.s/; (14.17)

where erfc.�/ is known in mathematics as the complementary error function.

Infinite speed?: For large values of s the shape function f .s/ approaches zero with a Gaussian
tail, f .s/ � exp.�s2/ D exp.�y2=4�t/, typical of momentum diffusion. The fluid is apparently
in motion everywhere for t > 0, but how can that be when the plate was only started to move
at time t D 0? The short answer is that we have assumed the fluid to be incompressible, and
this—fundamentally untenable—assumption will in itself entail infinite signal speeds. At a deeper
level, a diffusion equation like (14.5) is the continuum limit of the dynamics of random molecular
motion in the fluid, and although high molecular speeds are strongly damped at speeds beyond
vmol D

p
3RT=Mmol, they may in principle occur.
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The circulation around an in-
finitely tall rectangle with side L
against the moving wall is � DH

v � d` D UL.

The vorticity field has only one non-vanishing component,

!z.y; t/ D �
@vx.y; t/

@y
D �

Uf 0.s/

2
p
�t
D

U
p
��t

e�y
2=4�t : (14.18)

Before the plate started to move the flow was everywhere irrotational. Afterwards there is
vorticity everywhere in the fluid. Where did that come from? Consider a nearly infinite
rectangle with support of length L on the plate. By Stokes’ theorem (13.23) on page 217
the total flux of vorticity through the rectangle equals the circulation around its perimeter,
� D

R
! � dS D

H
v � d`. The fluid velocity is always vx D U on the plate, vanishes at

infinity, and is orthogonal to the sides of the rectangle, so that we obtain � D UL. Since the
circulation is constant in time, vorticity is not generated inside the Stokes layer itself during
its growth. Instead, it must arise at the plate surface during the instantaneous acceleration to
velocity U . For if the plate had followed a gentler road U.t/ from 0 to U , the circulation
would have been �.t/ D U.t/L, growing smoothly towards its final value. The conclusion
is that vorticity is generated at the plate surface during acceleration, and afterwards diffuses
away from the plate and into the fluid at large without changing the total flux.
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14.3 Dynamics of incompressible Newtonian fluids
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thinner

thicker

Newtonian

In Newtonian fluids the shear
stress �xy increases linearly with
the strain-rate ryvx , whereas
non-Newtonian fluids mostly be-
come thinner and only a few
thicker.

Numerous everyday fluids obey Newton’s law of viscosity (14.1) , for example water, air,
oil, alcohol and antifreeze. A number of common fluids are only approximatively New-
tonian, for example paint and blood, and others are strongly non-Newtonian, for example
tomato ketchup, jelly and putty. There also exist viscoelastic materials that—depending on
frequency—are both elastic and viscous. They are sometimes used in toys that can be slowly
deformed like clay but also bounce like rubber balls when dropped on the floor.

In Newtonian fluids the shear stress �xy is directly proportional to the velocity gradient
ryvx—also called the shear strain rate—with proportionality constant equal to the constant
shear viscosity �. Most non-Newtonian fluids become “thinner” as the shear strain rate in-
creases, meaning that the shear stress grows slower than linearly. Even the most Newtonian
of fluids, water, is thinner at shear strain rates above 1012 s�1. Only few fluids (for example
some starches stirred in water) appear to thicken with increasing strain rate. The science of
the general flow properties of materials is called rheology.

We shall in this section establish the general dynamics for incompressible, isotropic and
homogeneous Newtonian fluids, and postpone the analysis of the slightly more complicated
compressible fluids to section 17.4 on page 300.

Isotropic viscous stress
Newton’s law of viscosity (14.1) is a linear relation between the shear stress and the velocity
gradient, only valid in a particular flow geometry. As for Hooke’s law for elasticity (page 128)
we want a definition of viscous stress which takes the same form in any flow geometry and in
any Cartesian coordinate system, leaving us free to choose our own reference frame.

Most fluids are not only Newtonian, but also isotropic. Liquid crystals are anisotropic,
but so special that we shall not consider them here. In an isotropic fluid at rest there are no
internal directions at all and the stress tensor is determined by the pressure, �ij D �p ıij .
When such a fluid is set in motion, the velocity field v.x; t / defines a direction in every point
of space, but the velocity in a particular point cannot itself provoke stress in the fluid. It is the
variation in velocity from point to point that causes stress. Viscous stress must in other words
be determined by the velocity gradient tensor, rivj . In an incompressible fluid, the trace of
this tensor vanishes,

P
i rivi D r � v D 0, so the most general symmetric tensor one can

construct from the velocity gradients is of the form,

�ij D �p ıij C �
�
rivj Crj vi

�
: (14.19)

This is the natural generalization of Newton’s law of viscosity (14.1) for incompressible flow
to arbitrary Cartesian coordinate systems. Inserting the field of a steady planar flow v D

.vx.y/; 0; 0/, the only non-vanishing shear stress components are �xy D �yx D �ryvx.y/,
demonstrating that the coefficient � is indeed the shear viscosity introduced before.

The Navier–Stokes equations
The right-hand side of Cauchy’s general equation of motion (12.26) on page 198 equals the
effective density of force f �i D fi C

P
j rj�ij . Inserting the stress tensor (14.19) and using

again r � v D 0, we findX
j

rj�ij D �rip C �

�X
j

rirj vj C
X
j

r
2
j vi

�
D �rip C �r

2vi :

Here we have also assumed that the fluid is homogeneous such that the shear viscosity, like
the density, does not depend on x.
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Inserting this expression into Cauchy’s equation of motion and converting to ordinary
vector notation we finally obtain the fundamental equations for incompressible, isotropic and
homogenous fluids, due to Navier (1822) and Stokes (1845),

@v

@t
C .v � r/v D g �

1

�0
rp C �r

2v; r � v D 0; (14.20)

where �0 is the constant density, � D �=�0 is the constant kinematic viscosity and g D f =�0
is the acceleration field of the volume forces (normally due to gravity). Given the acceleration
field g, we now have four equations for the four fields, vx , vy , vz , and p. Note, however,
that whereas the three components of the velocity field are truly dynamic fields, for which the
time derivatives are specified, this is not the case for the pressure which is only determined
indirectly through the divergence condition, as discussed in section 13.1 on page 207.

George Gabriel Stokes (1819–
1903). British mathematician and
physicist. Contributed to the de-
velopment of field calculus, fluid
dynamics, optics and heat con-
duction.

Relatively simple to look at, the Navier–Stokes equations contain all the complexity of
real fluid flow, including that of Niagara Falls! It is therefore clear that one cannot in general
expect to find simple solutions. Exact solutions are only found in strongly restricted geome-
tries and under simplifying assumptions concerning the nature of the flow, as in the planar
laminar flow examples in the preceding section and the examples to be studied in chapter 15.

Millenium Prize Problem: Among the seven Millenium Prize Problems set out by the Clay
Mathematics Institute of Cambridge, Massachusetts, one concerns the existence of smooth, non-
singular solutions to the Navier–Stokes equations (even for the simpler case of incompressible
flow). The prize money of one million dollars illustrates how little we know and how much we
would like to know about the general features of these equations which appear to defy the standard
analytic methods for solving partial differential equations.

Boundary conditions
The Navier-Stokes equation for the velocity field is of first order in time, and needs initial
values for the fields and their spatial derivatives in order to calculate the field values at later
times. But what about physical boundaries, the solid containers of fluids, or even internal
boundaries between different fluids? How do the fields behave there? Let us discuss the
various fields that we have met one by one.

Density: The density is easy to dispose of, since it is allowed to be discontinuous and jump
at a boundary between two materials, so this provides us with no condition at all.
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Sketch of strongly varying veloc-
ity and shear stress in a region
of size a near a boundary. For
a ! 0 the velocity develops an
abrupt jump and the stress be-
comes infinite. From the Navier-
Stokes equation, it follows that
the strong decrease in shear stress
away from the discontinuity leads
to rapid momentum diffusion and
smoothing out of the discontinu-
ity.

Velocity: The normal component of the velocity field, vn D v�n, must always be continuous
across an interface between incompressible materials. If this were not the case, the materials
on the two sides of the interface would not move in unison. The tangential velocity component
vt D n � .v � n/ must also be continuous but for a different reason: Although a nearly
discontinuous tangential velocity variation may be created close to a wall, for example by
hitting the fluid container with a hammer, it cannot remain for long but is quickly smoothed
out by viscous momentum diffusion. A viscous fluid never slips along material boundaries
but adjusts it velocity to match the velocity of the material on the other side without any
discontinuity. This is the previously mentioned no-slip condition.

The complete velocity field may thus always be assumed to be continuous across any
interface between incompressible materials,

�v D 0: (14.21)

Only if the continuum approximation breaks down, cavitation and shear slippage may occur.
A notable exception to this rule is an open interface between a liquid and vacuum, where the
velocity field will always be discontinuous (vacuum is not a material!).
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Stress: Newton’s third law only requires the stress vector ��������� � n to be continuous across any
material interface (in the absence of surface tension),

���������� � On D 0: (14.22)

This only concerns three of the six components of the stress tensor. The other three are free
to jump at the interface (see example 6.7 on page 105). At an interface between a fluid and
vacuum the material stress vector must vanish, ��������� � On D 0, because the vacuum cannot exert
any force on any material object.

Pressure: Pressure is not necessarily continuous across a physical interface between two
materials — even in the absence of surface tension (see page 105). For general fluids at rest
and ideal fluids in motion, pressure is the only stress component, and must necessarily be
continuous because of the continuity of the stress vector. We shall now see that the pressure
must also be continuous for an incompressible viscous fluid moving along a solid wall, so that
the pressure in the fluid near the wall is identical to the pressure acting on the wall. In all
other cases the pressure will in general be discontinuous.
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Local coordinate system at a par-
ticular point of the interface.

The solid wall may without loss of generality be assumed to be at rest. Let us select any
point on the wall and choose a local coordinate system with origin in this point and with
the z-axis along the normal to the wall. Near the origin of this coordinate system, the wall
may be described by a quadratic function, z D Ax2 C By2 C 2Cxy. Expanding to first
order in the coordinates the velocity field becomes v.x; y; z/ D xrx vj0 C yry vj0. As
the velocity field has to vanish everywhere along the wall it follows that all the tangential
derivatives must vanish at the origin, rxv D ryv D 0 for x D y D z D 0. From the
divergence condition, r � v D 0, we find that the normal derivative of the normal component,
rzvz D �rxvx � ryvy D 0, must also vanish at the origin. Finally, using the stress tensor
(14.19) we get �zz D �p C 2�rzvz D �p at the origin. The continuity of the normal
component, �zz , at the wall consequently guarantees the continuity of the pressure.

* Viscous dissipation
When you gently and steadily stir a pot of soup, the fluid will after some time settle down into
a nearly steady flow. The fact that you still have to perform work while you stir steadily, shows
that there must be viscous friction forces at play in the soup. The friction forces between the
sides of the pot and the soup cannot perform any work because the fluid is at rest there, due
to the no-slip condition. All the work you perform must for this reason be spent against the
internal friction forces in the soup, the shear stresses acting between the moving layers of the
fluid. If you stop stirring, the soup quickly comes to rest and its kinetic energy is dissipated
into heat. We shall return to dissipation in chapters 20 and 22.

To calculate the dissipative rate of work, we turn back to the discussion of deformation
work resulting in eq. (7.38) on page 120. Since a fluid particle is displaced by ıu D v ıt in
a small time interval ıt , fluid motion may be seen as a continuous sequence of infinitesimal
deformations with strain tensor, ıuij D 1

2

�
riıuj Crj ıui

�
D

1
2

�
rivj Crj vi

�
ıt . The

symmetrized velocity gradients vij � ıuij =ıt D
1
2

�
rivj Crj vi

�
may thus be understood

as the rate of deformation or rate of strain of the fluid material. The rate of work PW D ıW=ıt
performed against the internal stresses is consequently,

PWint D

Z
V

X
ij

�ijrj vi dV D

Z
V

X
ij

�ij vij dV D

Z
V

2�
X
ij

v2ij dV: (14.23)

In the last step we have inserted the Newtonian stress tensor (14.19) and used that
P
i vi i D

r � v D 0. Evidently, the rate of work against internal shear stresses is always positive. It
always costs work to keep things moving against friction forces.
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14.4 Classification of flows
The most interesting phenomena in fluid dynamics arise from the competition between inertia
and viscosity, represented in the Navier–Stokes equation (14.20) by the advective acceleration
.v � r/v and the viscous diffusion term �r2v. Inertia attempts to continue the motion of a
fluid once it is started whereas viscosity acts as a brake. If inertia is dominant we may leave
out the viscous term, arriving again at Euler’s equations (13.1) describing lively, non-viscous
or ideal flow, analyzed in chapter 13. If on the other hand viscosity is dominant, we may drop
the advective term, and obtain the basic equations for sluggish creeping flow to be analyzed
in chapter 16.

The Reynolds number

Osborne Reynolds (1842–
1912). British engineer and
physicist. Contributed to fluid
mechanics in general, and to the
understanding of lubrication,
turbulence and tidal motion in
particular.

As a measure of how much an actual flow is lively or sluggish, one may make a rough estimate,
called the Reynolds number, for the ratio of the advective to the viscous terms. To get a simple
expression we assume that the velocity is of typical size jvj � U and that it changes by
a similar amount over a region of size L. The order of magnitude of the first-order spatial
derivatives of the velocity will then be of magnitude jrvj � U=L, and the second-order
derivatives will be

ˇ̌
r2v

ˇ̌
� U=L2. Consequently, the Reynolds number becomes,

Re �
j.v � r/vj

j�r2vj
�

U 2=L

�U=L2
D
UL

�
: (14.24)

As we saw on page 232, the Reynolds number may also be understood as the ratio Re �
tdiff=tflow of the typical diffusion time scale tdiff � L

2=� to the typical flow time scale tflow �

L=U .
In table 14.2 the Reynolds number is estimated for a number of flows, covering many

orders of magnitude. For small values of the Reynolds number, Re � 1, advection plays
only little role and the flow just oozes along, while for large values, Re � 1, viscosity does
not have much influence and the flow tends to be lively. The streamline pattern of creeping
flow is always orderly and layered, also called laminar, well known from the kitchen when
mixing cocoa into dough to make a chocolate cake (although dough is hardly Newtonian!).
The laminar flow pattern continues quite far beyond Re ' 1, but depending on the flow
geometry and other circumstances, there will be a Reynolds number, typically in the region
of thousands, where turbulence sets in with its characteristic tumbling and chaotic behavior.

Example 14.2 [Bathtub turbulence]: Getting out of a bathtub you create flows with speeds
of say U � 1 m s�1 over a distance of L � 1 m. The Reynolds number becomes Re � 106

and you are definitely creating visible turbulence in the water. Similarly, when jogging you create
air flows with U � 3 m s�1 and L � 1 m, leading to a Reynolds number around 2 � 105, and
you know that you must leave all kinds of little invisible turbulent eddies in the air behind you.
The fact that the Reynolds number is smaller in air than in water despite the higher velocity is a
consequence of the kinematic viscosity being larger for air than for water.

Example 14.3 [Curling]: For planar flow between two plates (section 14.1), the velocity
scale is set by the velocity difference U between the plates whereas the length scale is set by the
distance d between the plates. In the curling example 14.1 on page 231 we found U � 3 m s�1

and d � 43 �m, leading to a Reynolds number Re D Ud=� � 140. Although not truly creeping
flow, it is definitely laminar and not turbulent.

Example 14.4 [Water pipe]: A typical 1/2-inch water pipe has diameter d � 1:25 cm and
that sets the length scale. If the volume flux of water isQ D 100 cm3 s�1, the average water speed
becomes U D Q=�a2 � 0:8 m s�1 and we get a Reynolds number Re D Ud=� � 104 which
brings the flow well into the turbulent regime. For olive oil under otherwise identical conditions
we get Re � 0:15, and the flow would be creeping.
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Table 14.2. Table of Reynolds numbers for some moving objects calculated on the basis of typical
values of lengths and speeds. Viscosities are taken from table 14.1 on page 228. It is perhaps surprising
that a submarine operates at a Reynolds number that is larger than that of a passenger jet at cruising
speed, but this is mainly due to the kinematic viscosity of air being 15 times larger than that of water.

Size Velocity Reynolds
Fluid L Œm� U Œms�1� number

Ship (Queen Mary II; fig. 3.3) water 345 15 5:2 � 109

Submarine (Ohio class; nuclear) water 170 12 2:0 � 109

Jet airplane (Boeing 747-400) air 71 250 1:2 � 109

Blue whale water 33 10 3:3 � 108

Car air 5 30 9:7 � 106

Swimming human water 2 1 2:0 � 106

Jogging human air 1 3 2:0 � 105

Herring water 0.3 1 3:8 � 105

Golf ball air 0.043 40 2:2 � 105

Ping-pong ball air 0.040 10 5 � 104

Fly air 0.01 1 600
Flea air 0.001 3 190
Gnat air 0.001 0.1 6
Bacterium water 10�6 10�5 10�5

Hydrodynamic similarity
What does it mean if two flows have the same Reynolds number? A stone of size L D 1 m
sitting in a steady water flow with velocity U D 2 m s�1 has the same Reynolds number
as another stone of size L D 2 m in a steady water flow with velocity U D 1 m s�1. It
even has the same Reynolds number as a stone of size L D 4 m in a steady airflow with
velocity U D 8 m s�1, because the kinematic viscosity of air is about 15 times larger than
of water (at normal temperature and pressure). We shall now see that provided the stones are
geometrically similar, i.e. have congruent geometrical shapes, flows with the same Reynolds
numbers are also hydrodynamically similar and only differ by their overall length and velocity
scales, so that their flow patterns visualized by streamlines will look identical.

In the absence of volume forces, steady incompressible flow is determined by (14.20)
with g D 0 and @v=@t D 0, or

.v � r/v D �
1

�0
rp C �r

2v: (14.25)

Let us rescale all the variables by means of the overall scales �0, U , and L, writing

v D U Qv; x D L Qx; p D �0U
2
Qp; r D

1

L
Qr ; (14.26)

where the “tilded” symbols are all dimensionless. Inserting these variables, the steady flow
equation takes the form,

. Qv � Qr/ Qv D � Qr Qp C
1

Re
Qr
2
Qv: (14.27)

The only parameter appearing in this equation is the Reynolds number which may be in-
terpreted as the inverse of the dimensionless kinematic viscosity. The pressure is as men-
tioned not an independent dynamic variable and its scale is here fixed by the velocity scale,
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P D �0U
2. If the flow instead is driven by external pressure differences of magnitude P

rather than by velocity, the equivalent flow velocity scale is given by U D
p
P=�0.

In congruent flow geometries, the no-slip boundary conditions will also be the same, so
that any solution of the dimensionless equation can be scaled back to a solution of the original
equation by means of (14.26) . The three different flows around stones mentioned at the
beginning of this subsection may thus all be obtained from the same dimensionless solution
if the stones are geometrically similar and the Reynolds numbers identical.

Even if the flows are similar in air and water, the forces exerted on the stones will, however,
not be the same. The shear stress magnitude may be estimated as � � � jrvj � �U=L. The
viscous drag on an object of size L will then be of magnitude D � �L2 � �UL D ��Re.
The Reynolds numbers are assumed to be the same in the two cases, making the ratio of the
viscous drag on the stone in air to that in water about Dair=Dwater � .��/air=.��/water � 0:27.

Example 14.5 [Flight of the robofly]: The similarity of flows in congruent geometries can
be exploited to study the flow around tiny insects by means of enlarged slower moving models,
immersed in another fluid. It is, for example, hard to study the air flow around the wing of a
hovering fruit fly, when the wing flaps f D 50 times per second. For a wing size of L �
4 mm flapping through 180 ı the average velocity becomes U � �Lf � 1:3 m s�1 and the
corresponding Reynolds number Re � UL=� � 160. The same Reynolds number can be obtained
from a 19 cm plastic wing of the same shape, flapping once every 6 s in mineral oil with kinematic
viscosity � D 1:15 cm2 s�1, allowing for easy recording of the flow around the wing [BD01] .

Example 14.6 [High-pressure wind tunnels]: In the early days of flight, wind tunnels were
extensively used for empirical studies of lift and drag on scaled-down models of wings and aircraft.
Unfortunately, the smaller geometrical sizes of the models reduced the attainable Reynolds number
below that of real aircraft in flight. A solution to the problem was obtained by operating wind
tunnels at much higher than atmospheric pressure. Since the dynamic viscosity � is independent
of pressure (page 229), the Reynolds number Re D �0UL=� scales with the air density and thus
with pressure (at a given temperature). The famous Variable Density Tunnel (VDT) built in 1922 by
the US National Advisory Committee for Aeronautics (NACA) operated on a pressure of 20 atm
and was capable of attaining full-scale Reynolds numbers for models only 1/20th of the size of
real aircraft [Anderson 1997, p. 301]. The results obtained from the VDT had great influence on
aircraft design in the following 20 years.

In the presence of external volume forces, for example gravity, or for flows coupled to
other equations of motion, for example a heat equation, the flow patterns will depend on
further dimensionless quantities besides the Reynolds number. We shall only introduce such
quantities when they arise naturally in particular cases.

Flows in different geometries can only be compared in a coarse sense, even if they have
the same Reynolds number. A running man has the same Reynolds number as a swimming
herring, and a flying gnat the same Reynolds number as a man swimming in castor oil (which
cannot be recommended). In both cases the flow geometries are quite different, leading to
different streamline patterns. Here the Reynolds number can only be used to indicate the
character of the flow which tends to be turbulent around the running man and the swimming
herring, whereas it is laminar around the flying gnat and the man recklessly swimming in
castor oil.

Problems
14.1 Calculate the temperature dependence of the kinematic viscosity for an isentropic gas. What is
the exponent of the temperature for monatomic, diatomic and multiatomic gases?
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14.2 A car withM D 1000 kg moving at U0 D 100 km h�1 suddenly hits a patch of ice and begins to
slide. The total contact area between each wheel and the water is 800 cm2 and it is observed to slide to a
full stop in about 300m. Calculate the thickness of the water layer and discuss whether it is a reasonable
value. What is the time scale for stopping the car?

14.3 Consider planar momentum diffusion (page 231). Assume that the flow of the incompressible
‘river’ vanishes fast at infinity, as in the Gaussian case. (a) Show that for any river flowing along x the
total volume flux per unit of length in the z-direction is independent of time. (b) Show that the total
momentum per unit of length in the z-direction is likewise constant. (c) For the Gaussian river, calculate
the kinetic energy per unit of length in the x and z directions as a function of time. What happens for
t !1?

14.4 Estimate the Reynolds number for (a) an ocean current, (b) a water fall, (c) a weather cyclone,
(d) a hurricane, (e) a tornado, (f) lava running down a mountainside and (g) plate tectonic motion.

* 14.5 Show that the general solution to the momentum diffusion equation (14.5) is

vx.y; t/ D
1

2
p
��t

Z 1
�1

exp

 
�
.y � y0/2

4�t

!
vx.y

0; 0/ dy0: (14.28)

Use this to show that any bounded initial velocity distribution which is non-vanishing only for jyj < a

at t D 0 is Gaussian for jyj ! 1 at any later time.

* 14.6 At an interface (with local normal along z in a given point) between two incompressible viscous
fluids with different viscosities it is known (see p. 236) that there are no discontinuities in the velocity
field v, its tangential derivatives rxv and ryv, and in the stress vector components �xz , �yz and �zz .

Show that the non-vanishing discontinuities that follow from a discontinuity in viscosity �� are

(a) �p D 2��rzvz (proven in the text).

(b) �rzvx D �xz�.1=�/ and similarly for rzvy .

(c) ��xy D ��.rxvy Cryvx/.

(d) ��xx D ��p C 2��rxvx and similarly for ��yy .

14.7 Show that the pressure discontinuity across an interface between moving incompressible homo-
geneous fluids is given by the jump in viscosity,

�p D 2��rzvz : (14.29)

14.7 For the much rarer case of an interface between moving viscous fluids, we may also choose the
velocity to vanish at any chosen point of the interface, but since the velocity will not in general vanish at
bit away from this point, the tangential derivatives rxv and ryv will not vanish. From the continuity of
the velocity field across the interface, it follows however that they are continuous. Using the divergence
condition, we conclude that rzvz is also continuous but generally non-vanishing. Using this result
and the continuity of �zz D �p C 2�rzvz , we see that the pressure will only be discontinuous if the
viscosities are different on the two sides of the interface, with a jump in pressure �p D 2��rzvz .
Other discontinuities following from the discontinuity of the viscosity are determined in problem 14.6.
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