
Chapter 6

Partial Differential Equations

Most differential equations of physics involve quantities depending on both
space and time. Inevitably they involve partial derivatives, and so are par-
tial differential equations (PDE’s). Although PDE’s are inherently more
complicated that ODE’s, many of the ideas from the previous chapters — in
particular the notion of self adjointness and the resulting completeness of the
eigenfunctions — carry over to the partial differential operators that occur
in these equations.

6.1 Classification of PDE’s

We focus on second-order equations in two variables, such as the wave equa-
tion

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= f(x, t), (Hyperbolic) (6.1)

Laplace or Poisson’s equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= f(x, y), (Elliptic) (6.2)

or Fourier’s heat equation

∂2ϕ

∂x2
− κ∂ϕ

∂t
= f(x, t). (Parabolic) (6.3)

What do the names hyperbolic, elliptic and parabolic mean? In high-
school co-ordinate geometry we learned that a real quadratic curve

ax2 + 2bxy + cy2 + fx+ gy + h = 0 (6.4)
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194 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

represents a hyperbola, an ellipse or a parabola depending on whether the
discriminant , ac − b2, is less than zero, greater than zero, or equal to zero,
these being the conditions for the matrix

[
a b
b c

]
(6.5)

to have signature (+,−), (+,+) or (+, 0).
By analogy, the equation

a(x, y)
∂2ϕ

∂x2
+ 2b(x, y)

∂2ϕ

∂x∂y
+ c(x, y)

∂2ϕ

∂y2
+ (lower orders) = 0, (6.6)

is said to be hyperbolic, elliptic, or parabolic at a point (x, y) if
∣∣∣∣
a(x, y) b(x, y)
b(x, y) c(x, y)

∣∣∣∣ = (ac− b2)|(x,y), (6.7)

is less than, greater than, or equal to zero, respectively. This classification
helps us understand what sort of initial or boundary data we need to specify
the problem.

There are three broad classes of boundary conditions:
a) Dirichlet boundary conditions: The value of the dependent vari-

able is specified on the boundary.
b) Neumann boundary conditions: The normal derivative of the de-

pendent variable is specified on the boundary.
c) Cauchy boundary conditions: Both the value and the normal deriva-

tive of the dependent variable are specified on the boundary.
Less commonly met are Robin boundary conditions, where the value of a
linear combination of the dependent variable and the normal derivative of
the dependent variable is specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a
second-order ordinary differential equation. These are given at one end of
the interval only. The other two classes of boundary condition are higher-
dimensional analogues of the conditions we impose on an ODE at both ends
of the interval.

Each class of PDE’s requires a different class of boundary conditions in
order to have a unique, stable solution.

1) Elliptic equations require either Dirichlet or Neumann boundary con-
ditions on a closed boundary surrounding the region of interest. Other
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boundary conditions are either insufficient to determine a unique solu-
tion, overly restrictive, or lead to instabilities.

2) Hyperbolic equations require Cauchy boundary conditions on a open
surface. Other boundary conditions are either too restrictive for a
solution to exist, or insufficient to determine a unique solution.

3) Parabolic equations require Dirichlet or Neumann boundary condi-
tions on a open surface. Other boundary conditions are too restrictive.

6.2 Cauchy data

Given a second-order ordinary differential equation

p0y
′′ + p1y

′ + p2y = f (6.8)

with initial data y(a), y′(a) we can construct the solution incrementally. We
take a step δx = ε and use the initial slope to find y(a+ ε) = y(a) + εy ′(a).
Next we find y′′(a) from the differential equation

y′′(a) = − 1

p0
(p1y

′(a) + p2y(a)− f(a)), (6.9)

and use it to obtain y′(a + ε) = y′(a) + εy′′(a). We now have initial data,
y(a+ε), y′(a+ε), at the point a+ε, and can play the same game to proceed
to a + 2ε, and onwards.

t

t
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p

Figure 6.1: The surface Γ on which we are given Cauchy Data.

Suppose now that we have the analogous situation of a second order
partial differential equation

aµν(x)
∂2ϕ

∂xµ∂xν
+ (lower orders) = 0. (6.10)
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in Rn. We are also given initial data on a surface, Γ, of co-dimension one in
Rn.

At each point p on Γ we erect a basis n, t1, t2, . . . , tn−1, consisting of the
normal to Γ and n− 1 tangent vectors. The information we have been given
consists of the value of ϕ at every point p together with

∂ϕ

∂n
def
= nµ

∂ϕ

∂xµ
, (6.11)

the normal derivative of ϕ at p. We want to know if this Cauchy data
is sufficient to find the second derivative in the normal direction, and so
construct similar Cauchy data on the adjacent surface Γ + εn. If so, we can
repeat the process and systematically propagate the solution forward through
Rn.

From the given data, we can construct

∂2ϕ

∂n∂ti

def
= nµtνi

∂2ϕ

∂xµ∂xν
,

∂2ϕ

∂ti∂tj

def
= tνi t

ν
j

∂2ϕ

∂xµ∂xν
, (6.12)

but we do not yet have enough information to determine

∂2ϕ

∂n∂n
def
= nµnν

∂2ϕ

∂xµ∂xν
. (6.13)

Can we fill the data gap by using the differential equation (6.10)? Suppose
that

∂2ϕ

∂xµ∂xν
= φµν0 + nµnνΦ (6.14)

where φµν0 is a guess that is consistent with (6.12), and Φ is as yet unknown,
and, because of the factor of nµnν , does not affect the derivatives (6.12). We
plug into

aµν(xi)
∂2ϕ

∂xµ∂xν
+ (known lower orders) = 0. (6.15)

and get
aµνn

µnνΦ + (known) = 0. (6.16)

We can therefore find Φ provided that

aµνn
µnν 6= 0. (6.17)
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If this expression is zero, we are stuck. It is like having p0(x) = 0 in an
ordinary differential equation. On the other hand, knowing Φ tells us the
second normal derivative, and we can proceed to the adjacent surface where
we play the same game once more.

Definition: A characteristic surface is a surface Σ such that aµνn
µnν = 0

at all points on Σ. We can therefore propagate our data forward, provided
that the initial-data surface Γ is nowhere tangent to a characteristic surface.
In two dimensions the characteristic surfaces become one-dimensional curves.
An equation in two dimensions is hyperbolic, parabolic, or elliptic at at a
point (x, y) if it has two, one or zero characteristic curves through that point,
respectively.

Characteristics are both a curse and blessing . They are a barrier to
Cauchy data, but, as we see in the next two subsections, they are also the
curves along which information is transmitted.

6.2.1 Characteristics and first-order equations

Suppose we have a linear first-order partial differential equation

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = f(x, y). (6.18)

We can write this in vector notation as (v · ∇)u + cu = f , where v is the
vector field v = (a, b). If we define the flow of the vector field to be the
family of parametrized curves x(t), y(t) satisfying

dx

dt
= a(x, y),

dy

dt
= b(x, y), (6.19)

then the partial differential equation (6.18) reduces to an ordinary linear
differential equation

du

dt
+ c(t)u(t) = f(t) (6.20)

along each flow line. Here,

u(t) ≡ u(x(t), y(t)),

c(t) ≡ c(x(t), y(t)),

f(t) ≡ f(x(t), y(t)). (6.21)
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Γ

x

y

bad!

Figure 6.2: Initial data curve Γ, and flow-line characteristics.

Provided that a(x, y) and b(x, y) are never simultaneously zero, there will be
one flow-line curve passing through each point in R2. If we have been given
the initial value of u on a curve Γ that is nowhere tangent to any of these flow
lines then we can propagate this data forward along the flow by solving (6.20).
On the other hand, if the curve Γ does become tangent to one of the flow
lines at some point then the data will generally be inconsistent with (6.18)
at that point, and no solution can exist. The flow lines therefore play a role
analagous to the characteristics of a second-order partial differential equation,
and are therefore also called characteristics. The trick of reducing the partial
differential equation to a collection of ordinary differential equations along
each of its flow lines is called the method of characteristics.

Exercise 6.1: Show that the general solution to the equation

∂ϕ

∂x
− ∂ϕ

∂y
− (x− y)ϕ = 0

is
ϕ(x, y) = e−xyf(x+ y),

where f is an arbitrary function.

6.2.2 Second-order hyperbolic equations

Consider a second-order equation containing the operator

D = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
(6.22)
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We can always factorize

aX2 + 2bXY + cY 2 = (αX + βY )(γX + δY ), (6.23)

and from this obtain

a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ c

∂2

∂y2
=

(
α
∂

∂x
+ β

∂

∂y

)(
γ
∂

∂x
+ δ

∂

∂y

)
+ lower,

=

(
γ
∂

∂x
+ δ

∂

∂y

)(
α
∂

∂x
+ β

∂

∂y

)
+ lower.

(6.24)

Here “lower” refers to terms containing only first order derivatives such as

α

(
∂γ

∂x

)
∂

∂x
, β

(
∂δ

∂y

)
∂

∂y
, etc.

A necessary condition, however, for the coefficients α, β, γ, δ to be real is that

ac− b2 = αβγδ − 1

4
(αδ + βγ)2

= −1

4
(αδ − βγ)2 ≤ 0. (6.25)

A factorization of the leading terms in the second-order operator D as the
product of two real first-order differential operators therefore requires that
D be hyperbolic or parabolic. It is easy to see that this is also a sufficient
condition for such a real factorization. For the rest of this section we assume
that the equation is hyperbolic, and so

ac− b2 = −1

4
(αδ − βγ)2 < 0. (6.26)

With this condition, the two families of flow curves defined by

C1 :
dx

dt
= α(x, y),

dy

dt
= β(x, y), (6.27)

and

C2 :
dx

dt
= γ(x, y),

dy

dt
= δ(x, y), (6.28)

are distinct, and are the characteristics of D.
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A hyperbolic second-order differential equation Du = 0 can therefore be
written in either of two ways:

(
α
∂

∂x
+ β

∂

∂y

)
U1 + F1 = 0, (6.29)

or (
γ
∂

∂x
+ δ

∂

∂y

)
U2 + F2 = 0, (6.30)

where

U1 = γ
∂u

∂x
+ δ

∂u

∂y
,

U2 = α
∂u

∂x
+ β

∂u

∂y
, (6.31)

and F1,2 contain only ∂u/∂x and ∂u/∂y. Given suitable Cauchy data, we
can solve the two first-order partial differential equations by the method
of characteristics described in the previous subsection, and so find U1(x, y)
and U2(x, y). Because the hyperbolicity condition (6.26) guarantees that the
determinant ∣∣∣∣

γ δ
α β

∣∣∣∣ = γβ − αδ

is not zero, we can solve (6.31) and so extract from U1,2 the individual deriva-
tives ∂u/∂x and ∂u/∂y. From these derivatives and the initial values of u,
we can determine u(x, y).

6.3 Wave equation

The wave equation provides the paradigm for hyperbolic equations that can
be solved by the method of characteristics.

6.3.1 d’Alembert’s solution

Let ϕ(x, t) obey the wave equation

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= 0, −∞ < x <∞. (6.32)
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We use the method of characteristics to propagate Cauchy data ϕ(x, 0) =
ϕ0(x) and ϕ̇(x, 0) = v0(x), given on the curve Γ = {x ∈ R, t = 0}, forward
in time.

We begin by factoring the wave equation as

0 =

(
∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2

)
=

(
∂

∂x
+

1

c

∂

∂t

)(
∂ϕ

∂x
− 1

c

∂ϕ

∂t

)
. (6.33)

Thus, (
∂

∂x
+

1

c

∂

∂t

)
(U − V ) = 0, (6.34)

where

U = ϕ′ =
∂ϕ

∂x
, V =

1

c
ϕ̇ =

1

c

∂ϕ

∂t
. (6.35)

The quantity U − V is therefore constant along the characteristic curves

x− ct = const. (6.36)

Writing the linear factors in the reverse order yields the equation

(
∂

∂x
− 1

c

∂

∂t

)
(U + V ) = 0. (6.37)

This implies that U + V is constant along the characteristics

x + ct = const. (6.38)

Putting these two facts together tells us that

V (x, t′) =
1

2
[V (x, t′) + U(x, t′)] +

1

2
[V (x, t′)− U(x, t′)]

=
1

2
[V (x + ct′, 0) + U(x + ct′, 0)] +

1

2
[V (x− ct′, 0)− U(x− ct′, 0)].

(6.39)

The value of the variable V at the point (x, t′) has therefore been computed
in terms of the values of U and V on the initial curve Γ. After changing
variables from t′ to ξ = x ± ct′ as appropriate, we can integrate up to find
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that

ϕ(x, t) = ϕ(x, 0) + c

∫ t

0

V (x, t′)dt′

= ϕ(x, 0) +
1

2

∫ x+ct

x

ϕ′(ξ, 0) dξ +
1

2

∫ x−ct

x

ϕ′(ξ, 0) dξ +
1

2c

∫ x+ct

x−ct
ϕ̇(ξ, 0) dξ

=
1

2
{ϕ(x+ ct, 0) + ϕ(x− ct, 0)}+

1

2c

∫ x+ct

x−ct
ϕ̇(ξ, 0) dξ. (6.40)

This result

ϕ(x, t) =
1

2
{ϕ0(x + ct) + ϕ0(x− ct)}+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ (6.41)

is usually known as d’Alembert’s solution of the wave equation. It was actu-
ally obtained first by Euler in 1748.

x

t

x−ct x+ct

(x,t)

x−ct=const. x+ct=const.

Figure 6.3: Range of Cauchy data influencing ϕ(x, t).

The value of ϕ at x, t, is determined by only a finite interval of the initial
Cauchy data. In more generality, ϕ(x, t) depends only on what happens in
the past light-cone of the point, which is bounded by pair of characteristic
curves. This is illustrated in figure 6.3

D’Alembert and Euler squabbled over whether ϕ0 and v0 had to be twice
differentiable for the solution (6.41) to make sense. Euler wished to apply
(6.41) to a plucked string, which has a discontinuous slope at the plucked
point, but d’Alembert argued that the wave equation, with its second deriva-
tive, could not be applied in this case. This was a dispute that could not be
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resolved (in Euler’s favour) until the advent of the theory of distributions. It
highlights an important difference between ordinary and partial differential
equations: an ODE with smooth coefficients has smooth solutions; a PDE
with with smooth coefficients can admit discontinuous or even distributional
solutions.

An alternative route to d’Alembert’s solution uses a method that applies
most effectively to PDE’s with constant coefficients. We first seek a general
solution to the PDE involving two arbitrary functions. Begin with a change
of variables. Let

ξ = x+ ct,

η = x− ct. (6.42)

be light-cone co-ordinates. In terms of them, we have

x =
1

2
(ξ + η),

t =
1

2c
(ξ − η). (6.43)

Now,
∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂t

∂ξ

∂

∂t
=

1

2

(
∂

∂x
+

1

c

∂

∂t

)
. (6.44)

Similarly
∂

∂η
=

1

2

(
∂

∂x
− 1

c

∂

∂t

)
. (6.45)

Thus
(
∂2

∂x2
− 1

c2
∂2

∂t2

)
=

(
∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)
= 4

∂2

∂ξ∂η
. (6.46)

The characteristics of the equation

4
∂2ϕ

∂ξ∂η
= 0 (6.47)

are ξ = const. or η = const. There are two characteristics curves through
each point, so the equation is still hyperbolic.

With light-cone coordinates it is easy to see that a solution to
(
∂2

∂x2
− 1

c2
∂2

∂t2

)
ϕ = 4

∂2ϕ

∂ξ∂η
= 0 (6.48)
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is
ϕ(x, t) = f(ξ) + g(η) = f(x + ct) + g(x− ct). (6.49)

It is this this expression that was obtained by d’Alembert (1746).
Following Euler, we use d’Alembert’s general solution to propagate the

Cauchy data ϕ(x, 0) ≡ ϕ0(x) and ϕ̇(x, 0) ≡ v0(x) by using this information
to determine the functions f and g. We have

f(x) + g(x) = ϕ0(x),

c(f ′(x)− g′(x)) = v0(x). (6.50)

Integration of the second line with respect to x gives

f(x)− g(x) =
1

c

∫ x

0

v0(ξ) dξ + A, (6.51)

where A is an unknown (but irrelevant) constant. We can now solve for f
and g, and find

f(x) =
1

2
ϕ0(x) +

1

2c

∫ x

0

v0(ξ) dξ +
1

2
A,

g(x) =
1

2
ϕ0(x)−

1

2c

∫ x

0

v0(ξ) dξ −
1

2
A, (6.52)

and so

ϕ(x, t) =
1

2
{ϕ0(x+ ct) + ϕ0(x− ct)}+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ. (6.53)

The unknown constant A has disappeared in the end result, and again we
find “d’Alembert’s” solution.

Exercise 6.2: Show that when the operator D in a constant-coefficient second-
order PDE Dϕ = 0 is reducible, meaning that it can be factored into two
distinct first-order factors D = P1P2, where

Pi = αi
∂

∂x
+ βi

∂

∂y
+ γi,

then the general solution to Dϕ = 0 can be written as ϕ = φ1 + φ2, where
P1φ1 = 0, P2φ2 = 0. Hence, or otherwise, show that the general solution to
the equation

∂2ϕ

∂x∂y
+ 2

∂2ϕ

∂y2
− ∂ϕ

∂x
− 2

∂ϕ

∂y
= 0
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is

ϕ(x, y) = f(2x− y) + eyg(x),

where f , g, are arbitrary functions.

Exercise 6.3: Show that when the constant-coefficient operator D is of the
form

D = P 2 =

(
α
∂

∂x
+ β

∂

∂y
+ γ

)2

,

with α 6= 0, then the general solution to Dϕ = 0 is given by ϕ = φ1 + xφ2,
where Pφ1,2 = 0. (If α = 0 and β 6= 0, then ϕ = φ1 + yφ2.)

6.3.2 Fourier’s solution

In 1755 Daniel Bernoulli proposed solving for the motion of a finite length L
of transversely vibrating string by setting

y(x, t) =

∞∑

n=1

An sin
(nπx
L

)
cos

(
nπct

L

)
, (6.54)

but he did not know how to find the coefficients An (and perhaps did not
care that his cosine time dependence restricted his solution to the intial
condition ẏ(x, 0) = 0). Bernoulli’s idea was dismissed out of hand by Euler
and d’Alembert as being too restrictive. They simply refused to believe that
(almost) any chosen function could be represented by a trigonometric series
expansion. It was only fifty years later, in a series of papers starting in
1807, that Joseph Fourier showed how to compute the An and insisted that
indeed “any” function could be expanded in this way. Mathematicians have
expended much effort in investigating the extent to which Fourier’s claim is
true.

We now try our hand at Bernoulli’s game. Because we are solving the
wave equation on the infinite line, we seek a solution as a Fourier integral .
A sufficiently general form is

ϕ(x, t) =

∫ ∞

−∞

dk

2π

{
a(k)eikx−iωkt + a∗(k)e−ikx+iωkt

}
, (6.55)

where ωk ≡ c|k| is the positive root of ω2 = c2k2. The terms being summed
by the integral are each individually of the form f(x−ct) or f(x+ct), and so
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ϕ(x, t) is indeed a solution of the wave equation. The positive-root convention
means that positive k corresponds to right-going waves, and negative k to
left-going waves.

We find the amplitudes a(k) by fitting to the Fourier transforms

Φ(k)
def
=

∫ ∞

−∞
ϕ(x, t = 0)e−ikxdx,

χ(k)
def
=

∫ ∞

−∞
ϕ̇(x, t = 0)e−ikxdx, (6.56)

of the Cauchy data. Comparing

ϕ(x, t = 0) =

∫ ∞

−∞

dk

2π
Φ(k)eikx,

ϕ̇(x, t = 0) =

∫ ∞

−∞

dk

2π
χ(k)eikx, (6.57)

with (6.55) shows that

Φ(k) = a(k) + a∗(−k),
χ(k) = iωk

(
a∗(−k)− a(k)

)
. (6.58)

Solving, we find

a(k) =
1

2

(
Φ(k) +

i

ωk
χ(k)

)
,

a∗(k) =
1

2

(
Φ(−k)− i

ωk
χ(−k)

)
. (6.59)

The accumulated wisdom of two hundred years of research on Fourier
series and Fourier integrals shows that, when appropriately interpreted, this
solution is equivalent to d’Alembert’s.

6.3.3 Causal Green function

We now add a source term:

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
= q(x, t). (6.60)
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We solve this equation by finding a Green function such that

(
1

c2
∂2

∂t2
− ∂2

∂x2

)
G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ). (6.61)

If the only waves in the system are those produced by the source, we should
demand that the Green function be causal , in that G(x, t; ξ, τ) = 0 if t < τ .

x

t

(ξ,τ)

Figure 6.4: Support of G(x, t; ξ, τ) for fixed ξ, τ , or the “domain of influence.”

To construct the causal Green function, we integrate the equation over
an infinitesimal time interval from τ − ε to τ + ε and so find Cauchy data

G(x, τ + ε; ξ, τ) = 0,

d

dt
G(x, τ + ε; ξ, τ) = c2δ(x− ξ). (6.62)

We insert this data into d’Alembert’s solution to get

G(x, t; ξ, τ) = θ(t− τ) c
2

∫ x+c(t−τ)

x−c(t−τ)
δ(ζ − ξ)dζ

=
c

2
θ(t− τ)

{
θ
(
x− ξ + c(t− τ)

)
− θ
(
x− ξ − c(t− τ)

)}
.

(6.63)

We can now use the Green function to write the solution to the inhomo-
geneous problem as

ϕ(x, t) =

∫∫
G(x, t; ξ, τ)q(ξ, τ) dτdξ. (6.64)
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The step-function form of G(x, t; ξ, τ) allows us to obtain

ϕ(x, t) =

∫∫
G(x, t; ξ, τ)q(ξ, τ) dτdξ,

=
c

2

∫ t

−∞
dτ

∫ x+c(t−τ)

x−c(t−τ)
q(ξ, τ) dξ

=
c

2

∫∫

Ω

q(ξ, τ) dτdξ, (6.65)

where the domain of integration Ω is shown in figure 6.5.

(ξ,τ)
τx-c(t-  ) τx+c(t-  ) 

τ

ξ

(x,t)

Figure 6.5: The region Ω, or the “domain of dependence.”

We can write the causal Green function in the form of Fourier’s solution
of the wave equation. We claim that

G(x, t; ξ, τ) = c2
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

{
eik(x−ξ)e−iω(t−τ)

c2k2 − (ω + iε)2

}
, (6.66)

where the iε plays the same role in enforcing causality as it does for the
harmonic oscillator in one dimension. This is only to be expected. If we
decompose a vibrating string into normal modes, then each mode is an in-
dependent oscillator with ω2

k = c2k2, and the Green function for the PDE is
simply the sum of the ODE Green functions for each k mode. To confirm our
claim, we exploit our previous results for the single-oscillator Green function
to evaluate the integral over ω, and we find

G(x, t; 0, 0) = θ(t)c2
∫ ∞

−∞

dk

2π
eikx

1

c|k| sin(|k|ct). (6.67)
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Despite the factor of 1/|k|, there is no singularity at k = 0, so no iε is
needed to make the integral over k well defined. We can do the k integral
by recognizing that the integrand is nothing but the Fourier representation,
2
k

sin ak, of a square-wave pulse. We end up with

G(x, t; 0, 0) = θ(t)
c

2
{θ(x+ ct)− θ(x− ct)} , (6.68)

the same expression as from our direct construction. We can also write

G(x, t; 0, 0) =
c

2

∫ ∞

−∞

dk

2π

(
i

|k|

){
eikx−ic|k|t − e−ikx+ic|k|t

}
, t > 0, (6.69)

which is in explicit Fourier-solution form with a(k) = ic/2|k|.
Illustration: Radiation Damping. Figure 6.6 shows bead of mass M that
slides without friction on the y axis. The bead is attached to an infinite
string which is initially undisturbed and lying along the x axis. The string has
tension T , and a density ρ, so the speed of waves on the string is c =

√
T/ρ.

We show that either d’Alembert or Fourier can be used to compute the effect
of the string on the motion of the bead.

We first use d’Alembert’s general solution to show that wave energy emit-
ted by the moving bead gives rise to an effective viscous damping force on
it.

v

x

y

T

Figure 6.6: A bead connected to a string.

The string tension acting on the on the bead leads to the equation of
motion Mv̇ = Ty′(0, t), and from the condition of no incoming waves we
know that

y(x, t) = y(x− ct). (6.70)

Thus y′(0, t) = −ẏ(0, t)/c. But the bead is attached to the string, so v(t) =
ẏ(0, t), and therefore

Mv̇ = −
(
T

c

)
v. (6.71)
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The emitted radiation therefore generates a velocity-dependent drag force
with friction coefficient η = T/c.

We need an infinitely long string for (6.71) to be true for all time. If
the string had a finite length L, then, after a period of 2L/c, energy will be
reflected back to the bead and this will complicate matters.

x

’(x)
0

(x)
0

φ

− φ1

Figure 6.7: The function φ0(x) and its derivative.

We now show that Fourier’s mode-decomposition of the string motion,
combined with the Caldeira-Leggett analysis of chapter 5, yields the same
expression for the radiation damping as the d’Alembert solution. Our bead-
string contraption has Lagrangian

L =
M

2
[ẏ(0, t)]2 − V [y(0, t)] +

∫ L

0

{
ρ

2
ẏ2 − T

2
y′

2

}
dx. (6.72)

Here, V [y] is some potential energy for the bead.

To deal with the motion of the bead, we introduce a function φ0(x) such
that φ0(0) = 1 and φ0(x) decreases rapidly to zero as x increases (see figure
6.7. We therefore have −φ′

0(x) ≈ δ(x). We expand y(x, t) in terms of φ0(x)
and the normal modes of a string with fixed ends as

y(x, t) = y(0, t)φ0(x) +
∞∑

n=1

qn(t)

√
2

Lρ
sin knx. (6.73)

Here knL = nπ. Because y(0, t)φ0(x) describes the motion of only an in-
finitesimal length of string, y(0, t) makes a negligeable contribution to the
string kinetic energy, but it provides a linear coupling of the bead to the
string normal modes, qn(t), through the Ty′2/2 term. Inserting the mode
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expansion into the Lagrangian, and after about half a page of arithmetic, we
end up with

L =
M

2
[ẏ(0)]2−V [y(0)]+y(0)

∞∑

n=1

fnqn+
∞∑

n=1

(
1

2
q̇2
n − ω2

nq
2
n

)
−1

2

∞∑

n=1

(
f 2
n

ω2
n

)
y(0)2,

(6.74)
where ωn = ckn, and

fn = T

√
2

Lρ
kn. (6.75)

This is exactly the Caldeira-Leggett Lagrangian — including their frequency-
shift counter-term that reflects that fact that a static displacement of an
infinite string results in no additional force on the bead.1 When L becomes
large, the eigenvalue density of states

ρ(ω) =
∑

n

δ(ω − ωn) (6.76)

becomes

ρ(ω) =
L

πc
. (6.77)

The Caldeira-Leggett spectral function

J(ω) =
π

2

∑

n

(
f 2
n

ωn

)
δ(ω − ωn), (6.78)

is therefore

J(ω) =
π

2
· 2T

2k2

Lρ
· 1

kc
· L
πc

=

(
T

c

)
ω, (6.79)

where we have used c =
√
T/ρ. Comparing with Caldeira-Leggett’s J(ω) =

ηω, we see that the effective viscosity is given by η = T/c, as before. The
necessity of having an infinitely long string here translates into the require-
ment that we must have a continuum of oscillator modes. It is only after the
sum over discrete modes ωi is replaced by an integral over the continuum of
ω’s that no energy is ever returned to the system being damped.

1For a finite length of string that is fixed at the far end, the string tension does add
1
2Ty(0)2/L to the static potential. In the mode expansion, this additional restoring force
arises from the first term of−φ′

0(x) ≈ 1/L+(2/L)
∑∞

n=1 cos knx in 1
2Ty(0)2

∫
(φ′0)

2 dx. The
subsequent terms provide the Caldeira-Leggett counter-term. The first-term contribution
has been omitted in (6.74) as being unimportant for large L.
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For our bead and string, the mode-expansion approach is more com-
plicated than d’Alembert’s. In the important problem of the drag forces
induced by the emission of radiation from an accelerated charged particle,
however, the mode-expansion method leads to an informative resolution2 of
the pathologies of the Abraham-Lorentz equation,

M(v̇ − τ v̈) = Fext, τ =
2

3

e2

Mc3
1

4πε0
(6.80)

which is plagued by runaway, or apparently acausal, solutions.

6.3.4 Odd vs. even dimensions

Consider the wave equation for sound in the three dimensions. We have a
velocity potential φ which obeys the wave equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2
∂2φ

∂t2
= 0, (6.81)

and from which the velocity, density, and pressure fluctuations can be ex-
tracted as

v1 = ∇φ,
ρ1 = −ρ0

c2
φ̇,

P1 = c2ρ1. (6.82)

In three dimensions, and considering only spherically symmetric waves,
the wave equation becomes

∂2(rφ)

∂r2
− 1

c2
∂2(rφ)

∂t2
= 0, (6.83)

with solution

φ(r, t) =
1

r
f
(
t− r

c

)
+

1

r
g
(
t+

r

c

)
. (6.84)

Consider what happens if we put a point volume source at the origin (the
sudden conversion of a negligeable volume of solid explosive to a large volume

2G. W. Ford, R. F. O’Connell, Phys. Lett. A 157 (1991) 217.
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of hot gas, for example). Let the rate at which volume is being intruded be
q̇. The gas velocity very close to the origin will be

v(r, t) =
q̇(t)

4πr2
. (6.85)

Matching this to an outgoing wave gives

q̇(t)

4πr2
= v1(r, t) =

∂φ

∂r
= − 1

r2
f
(
t− r

c

)
− 1

rc
f ′
(
t− r

c

)
. (6.86)

Close to the origin, in the near field , the term ∝ f/r2 will dominate, and so

− 1

4π
q̇(t) = f(t). (6.87)

Further away, in the far field or radiation field , only the second term will
survive, and so

v1 =
∂φ

∂r
≈ − 1

rc
f ′
(
t− r

c

)
. (6.88)

The far-field velocity-pulse profile v1 is therefore the derivative of the near-
field v1 pulse profile.

v

x

Near field Far field

x

v or P

Figure 6.8: Three-dimensional blast wave.

The pressure pulse

P1 = −ρ0φ̇ =
ρ0

4πr
q̈
(
t− r

c

)
(6.89)

is also of this form. Thus, a sudden localized expansion of gas produces an
outgoing pressure pulse which is first positive and then negative.
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This phenomenon can be seen in (old, we hope) news footage of bomb
blasts in tropical regions. A spherical vapour condensation wave can been
seen spreading out from the explosion. The condensation cloud is caused by
the air cooling below the dew-point in the low-pressure region which tails the
over-pressure blast.

Now consider what happens if we have a sheet of explosive, the simultane-
ous detonation of every part of which gives us a one-dimensional plane-wave
pulse. We can obtain the plane wave by adding up the individual spherical
waves from each point on the sheet.

r

xs
P

Figure 6.9: Sheet-source geometry.

Using the notation defined in figure 6.9, we have

φ(x, t) = 2π

∫ ∞

0

1√
x2 + s2

f

(
t−
√
x2 + s2

c

)
sds (6.90)

with f(t) = −q̇(t)/4π, where now q̇ is the rate at which volume is being
intruded per unit area of the sheet. We can write this as

2π

∫ ∞

0

f

(
t−
√
x2 + s2

c

)
d
√
x2 + s2,

= 2πc

∫ t−x/c

−∞
f(τ) dτ,
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= − c
2

∫ t−x/c

−∞
q̇(τ) dτ. (6.91)

In the second line we have defined τ = t −
√
x2 + s2/c, which, inter alia,

interchanged the role of the upper and lower limits on the integral.
Thus, v1 = φ′(x, t) = 1

2
q̇(t − x/c). Since the near field motion produced

by the intruding gas is v1(r) = 1
2
q̇(t), the far-field displacement exactly re-

produces the initial motion, suitably delayed of course. (The factor 1/2 is
because half the intruded volume goes towards producing a pulse in the neg-
ative direction.)

In three dimensions, the far-field motion is the first derivative of the near-
field motion. In one dimension, the far-field motion is exactly the same as
the near-field motion. In two dimensions the far-field motion should there-
fore be the half-derivative of the near-field motion — but how do you half-
differentiate a function? An answer is suggested by the theory of Laplace
transformations as

(
d

dt

) 1
2

F (t)
def
=

1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ. (6.92)

Let us now repeat the explosive sheet calculation for an exploding wire.

s
r

Px

Figure 6.10: Line-source geometry.

Using the geometry shown in figure 6.10, we have

ds = d
(√

r2 − x2
)

=
r dr√
r2 − x2

, (6.93)
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and combining the contributions of the two parts of the wire that are the
same distance from p, we can write

φ(x, t) =

∫ ∞

x

1

r
f
(
t− r

c

) 2r dr√
r2 − x2

= 2

∫ ∞

x

f
(
t− r

c

) dr√
r2 − x2

, (6.94)

with f(t) = −q̇(t)/4π, where now q̇ is the volume intruded per unit length.
We may approximate r2−x2 ≈ 2x(r−x) for the near parts of the wire where
r ≈ x, since these make the dominant contribution to the integral. We also
set τ = t− r/c, and then have

φ(x, t) =
2c√
2x

∫ (t−x/c)

−∞
f (τ)

dr√
(ct− x)− cτ

,

= − 1

2π

√
2c

x

∫ (t−x/c)

−∞
q̇ (τ)

dτ√
(t− x/c)− τ

. (6.95)

The far-field velocity is the x gradient of this,

v1(r, t) =
1

2πc

√
2c

x

∫ (t−x/c)

−∞
q̈ (τ)

dτ√
(t− x/c)− τ

, (6.96)

and is therefore proportional to the 1/2-derivative of q̇(t− r/c).

Near field Far field

v v

r r

Figure 6.11: In two dimensions the far-field pulse has a long tail.

A plot of near field and far field motions in figure 6.11 shows how the
far-field pulse never completely dies away to zero. This long tail means that
one cannot use digital signalling in two dimensions.
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Moral Tale: One of our colleagues was performing numerical work on earth-
quake propagation. The source of his waves was a long deep linear fault,
so he used the two-dimensional wave equation. Not wanting to be troubled
by the actual creation of the wave pulse, he took as initial data an outgoing
finite-width pulse. After a short propagation time his numerical solution ap-
peared to misbehave. New pulses were being emitted from the fault long after
the initial one. He wasted several months in vain attempt to improve the
stability of his code before he realized that what he was seeing was real. The
lack of a long tail on his pulse meant that it could not have been created by
a briefly-active line source. The new “unphysical” waves were a consequence
of the source striving to suppress the long tail of the initial pulse. Moral :
Always check that a solution of the form you seek actually exists before you
waste your time trying to compute it.

Exercise 6.4: Use the calculus of improper integrals to show that, provided
F (−∞) = 0, we have

d

dt

(
1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ

)
=

1√
π

∫ t

−∞

F̈ (τ)√
t− τ dτ. (6.97)

This means that
d

dt

(
d

dt

) 1
2

F (t) =

(
d

dt

) 1
2 d

dt
F (t). (6.98)

6.4 Heat equation

Fourier’s heat equation
∂φ

∂t
= κ

∂2φ

∂x2
(6.99)

is the archetypal parabolic equation. It often comes with initial data φ(x, t = 0),
but this is not Cauchy data, as the curve t = const. is a characteristic.

The heat equation is also known as the diffusion equation.

6.4.1 Heat kernel

If we Fourier transform the initial data

φ(x, t = 0) =

∫ ∞

−∞

dk

2π
φ̃(k)eikx, (6.100)
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and write

φ(x, t) =

∫ ∞

−∞

dk

2π
φ̃(k, t)eikx, (6.101)

we can plug this into the heat equation and find that

∂φ̃

∂t
= −κk2φ̃. (6.102)

Hence,

φ(x, t) =

∫ ∞

−∞

dk

2π
φ̃(k, t)eikx

=

∫ ∞

−∞

dk

2π
φ̃(k, 0)eikx−κk

2t. (6.103)

We may now express φ̃(k, 0) in terms of φ(x, 0) and rearrange the order of
integration to get

φ(x, t) =

∫ ∞

−∞

dk

2π

(∫ ∞

−∞
φ(ξ, 0)eikξ dξ

)
eikx−κk

2t

=

∫ ∞

−∞

(∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t

)
φ(ξ, 0)dξ

=

∫ ∞

−∞
G(x, ξ, t)φ(ξ, 0) dξ, (6.104)

where

G(x, ξ, t) =

∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t =
1√

4πκt
exp

{
− 1

4κt
(x− ξ)2

}
. (6.105)

Here, G(x, ξ, t) is the heat kernel . It represents the spreading of a unit blob
of heat.
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G(x, ξ ,t)

ξ
x

Figure 6.12: The heat kernel at three successive times.

As the heat spreads, the total amount of heat, represented by the area
under the curve in figure 6.12, remains constant:

∫ ∞

−∞

1√
4πκt

exp

{
− 1

4κt
(x− ξ)2

}
dx = 1. (6.106)

The heat kernel possesses a semigroup property

G(x, ξ, t1 + t2) =

∫ ∞

−∞
G(x, η, t2)G(η, ξ, t1)dη. (6.107)

Exercise: Prove this.

6.4.2 Causal Green function

Now we consider the inhomogeneous heat equation

∂u

∂t
− ∂2u

∂x2
= q(x, t), (6.108)

with initial data u(x, 0) = u0(x). We define a Causal Green function by

(
∂

∂t
− ∂2

∂x2

)
G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ) (6.109)
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and the requirement that G(x, t; ξ, τ) = 0 if t < τ . Integrating the equation
from t = τ − ε to t = τ + ε tells us that

G(x, τ + ε; ξ, τ) = δ(x− ξ). (6.110)

Taking this delta function as initial data φ(x, t = τ) and inserting into (6.104)
we read off

G(x, t; ξ, τ) = θ(t− τ) 1√
4π(t− τ)

exp

{
− 1

4(t− τ)(x− ξ)2

}
. (6.111)

We apply this Green function to the solution of a problem involving both
a heat source and initial data given at t = 0 on the entire real line. We
exploit a variant of the Lagrange-identity method we used for solving one-
dimensional ODE’s with inhomogeneous boundary conditions. Let

Dx,t ≡
∂

∂t
− ∂2

∂x2
, (6.112)

and observe that its formal adjoint,

D†
x,t ≡ −

∂

∂t
− ∂2

∂x2
. (6.113)

is a “backward” heat-equation operator. The corresponding “backward”
Green function

G†(x, t; ξ, τ) = θ(τ − t) 1√
4π(τ − t)

exp

{
− 1

4(τ − t)(x− ξ)
2

}
(6.114)

obeys
D†
x,tG

†(x, t; ξ, τ) = δ(x− ξ)δ(t− τ), (6.115)

with adjoint boundary conditions. These makeG† anti-causal , in thatG†(t− τ)
vanishes when t > τ . Now we make use of the two-dimensional Lagrange
identity

∫ ∞

−∞
dx

∫ T

0

dt
{
u(x, t)D†

x,tG
†(x, t; ξ, τ)−

(
Dx,tu(x, t)

)
G†(x, t; ξ, τ)

}

=

∫ ∞

−∞
dx
{
u(x, 0)G†(x, 0; ξ, τ)

}
−
∫ ∞

−∞
dx
{
u(x, T )G†(x, T ; ξ, τ)

}
. (6.116)
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Assume that (ξ, τ) lies within the region of integration. Then the left hand
side is equal to

u(ξ, τ)−
∫ ∞

−∞
dx

∫ T

0

dt
{
q(x, t)G†(x, t; ξ, τ)

}
. (6.117)

On the right hand side, the second integral vanishes because G† is zero on
t = T . Thus,

u(ξ, τ) =

∫ ∞

−∞
dx

∫ T

0

dt
{
q(x, t)G†(x, t; ξ, τ)

}
+

∫ ∞

−∞

{
u(x, 0)G†(x, 0; ξ, τ)

}
dx

(6.118)
Rewriting this by using

G†(x, t; ξ, τ) = G(ξ, τ ; x, t), (6.119)

and relabeling x↔ ξ and t↔ τ , we have

u(x, t) =

∫ ∞

−∞
G(x, t; ξ, 0)u0(ξ) dξ +

∫ ∞

−∞

∫ t

0

G(x, t; ξ, τ)q(ξ, τ)dξdτ. (6.120)

Note how the effects of any heat source q(x, t) active prior to the initial-data
epoch at t = 0 have been subsumed into the evolution of the initial data.

6.4.3 Duhamel’s principle

Often, the temperature of the spatial boundary of a region is specified in
addition to the initial data. Dealing with this type of problem leads us to a
new strategy.

Suppose we are required to solve

∂u

∂t
= κ

∂2u

∂x2
(6.121)

for the semi-infinite rod shown in figure 6.13. We are given a specified tem-
perature, u(0, t) = h(t), at the end x = 0, and for all other points x > 0 we
are given an initial condition u(x, 0) = 0.
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x

h(t)
u(x,t)

u

Figure 6.13: Semi-infinite rod heated at one end.

We begin by finding a solution w(x, t) that satisfies the heat equation with
w(0, t) = 1 and initial data w(x, 0) = 0, x > 0. This solution is constructed
in problem 6.14, and is

w = θ(t)

{
1− erf

(
x

2
√
t

)}
. (6.122)

Here erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−z
2

dz. (6.123)

which has the properties that erf(0) = 0 and erf(x) → 1 as x → ∞. See
figure 6.14.

1

x

erf(x)

Figure 6.14: Error function.

If we were given
h(t) = h0θ(t− t0), (6.124)

then the desired solution would be

u(x, t) = h0w(x, t− t0). (6.125)
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For a sum

h(t) =
∑

n

hnθ(t− tn), (6.126)

the principle of superposition (i.e. the linearity of the problem) tell us that
the solution is the corresponding sum

u(x, t) =
∑

n

hnw(x, t− tn). (6.127)

We therefore decompose h(t) into a sum of step functions

h(t) = h(0) +

∫ t

0

ḣ(τ) dτ

= h(0) +

∫ ∞

0

θ(t− τ)ḣ(τ) dτ. (6.128)

It is should now be clear that

u(x, t) =

∫ t

0

w(x, t− τ)ḣ(τ) dτ + h(0)w(x, t)

= −
∫ t

0

(
∂

∂τ
w(x, t− τ)

)
h(τ) dτ

=

∫ t

0

(
∂

∂t
w(x, t− τ)

)
h(τ) dτ. (6.129)

This is called Duhamel’s solution, and the trick of expressing the data as a
sum of Heaviside step functions is called Duhamel’s principle.

We do not need to be as clever as Duhamel. We could have obtained
this result by using the method of images to find a suitable causal Green
function for the half line, and then using the same Lagrange-identity method
as before.

6.5 Potential theory

The study of boundary-value problems involving the Laplacian is usually
known as “‘Potential Theory.” We seek solutions to these problems in some
region Ω, whose boundary we denote by the symbol ∂Ω.



224 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

Poisson’s equation, −∇2χ(r) = f(r), r ∈ Ω, and the Laplace equation to
which it reduces when f(r) ≡ 0, come along with various boundary condi-
tions, of which the commonest are

χ = g(r) on ∂Ω, (Dirichlet)

(n · ∇)χ = g(r) on ∂Ω. (Neumann) (6.130)

A function for which ∇2χ = 0 in some region Ω is said to be harmonic there.

6.5.1 Uniqueness and existence of solutions

We begin by observing that we need to be a little more precise about what
it means for a solution to “take” a given value on a boundary. If we ask for
a solution to the problem ∇2ϕ = 0 within Ω = {(x, y) ∈ R2 : x2 + y2 < 1}
and ϕ = 1 on ∂Ω, someone might claim that the function defined by setting
ϕ(x, y) = 0 for x2 + y2 < 1 and ϕ(x, y) = 1 for x2 + y2 = 1 does the job—
but such a discontinuous “solution” is hardly what we had in mind when we
stated the problem. We must interpret the phrase “takes a given value on the
boundary” as meaning that the boundary data is the limit, as we approach
the boundary, of the solution within Ω.

With this understanding, we assert that a function harmonic in a bounded
subset Ω of Rn is uniquely determined by the values it takes on the boundary
of Ω. To see that this is so, suppose that ϕ1 and ϕ2 both satisfy ∇2ϕ = 0 in
Ω, and coincide on the boundary. Then χ = ϕ1 − ϕ2 obeys ∇2χ = 0 in Ω,
and is zero on the boundary. Integrating by parts we find that

∫

Ω

|∇χ|2dnr =

∫

∂Ω

χ(n · ∇)χ dS = 0. (6.131)

Here dS is the element of area on the boundary and n the outward-directed
normal. Now, because the second derivatives exist, the partial derivatives
entering into ∇χ must be continuous, and so the vanishing of integral of
|∇χ|2 tells us that ∇χ is zero everywhere within Ω. This means that χ is
constant — and because it is zero on the boundary it is zero everywhere.

An almost identical argument shows that if Ω is a bounded connected
region, and if ϕ1 and ϕ2 both satisfy ∇2ϕ = 0 within Ω and take the same
values of (n ·∇)ϕ on the boundary, then ϕ1 = ϕ2 + const. We have therefore
shown that, if it exists, the solutions of the Dirichlet boundary value problem
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is unique, and the solution of the Neumann problem is unique up to the
addition of an arbitrary constant.

In the Neumann case, with boundary condition (n · ∇)ϕ = g(r), and
integration by parts gives

∫

Ω

∇2ϕdnr =

∫

∂Ω

(n · ∇)ϕdS =

∫

∂Ω

g dS, (6.132)

and so the boundary data g(r) must satisfy
∫
∂Ω
g dS = 0 if a solution to

∇2ϕ = 0 is to exist. This is an example of the Fredhom alternative that
relates the existence of a non-trivial null space to constraints on the source
terms. For the inhomogeneous equation −∇2ϕ = f , the Fredholm constraint
becomes ∫

∂Ω

g dS +

∫

Ω

f dnr = 0. (6.133)

Given that we have satisfied any Fredholm constraint, do solutions to the
Dirichlet and Neumann problem always exist? That solutions should exist is
suggested by physics: the Dirichlet problem corresponds to an electrostatic
problem with specified boundary potentials and the Neumann problem cor-
responds to finding the electric potential within a resistive material with
prescribed current sources on the boundary. The Fredholm constraint says
that if we drive current into the material, we must must let it out somewhere.
Surely solutions always exist to these physics problems? In the Dirichlet case
we can even make a mathematically plausible argument for existence: We
observe that the boundary-value problem

∇2ϕ = 0, r ∈ Ω

ϕ = f, r ∈ ∂Ω (6.134)

is solved by taking ϕ to be the χ that minimizes the functional

J [χ] =

∫

Ω

|∇χ|2dnr (6.135)

over the set of continuously differentiable functions taking the given boundary
values. Since J [χ] is positive, and hence bounded below, it seems intuitively
obvious that there must be some function χ for which J [χ] is a minimum.
The appeal of this Dirichlet principle argument led even Riemann astray.
The fallacy was exposed by Weierstrass who provided counterexamples.
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Consider, for example, the problem of finding a function ϕ(x, y) obeying
∇2ϕ = 0 within the punctured disc D′ = {(x, y) ∈ R2 : 0 < x2 + y2 < 1}
with boundary data ϕ(x, y) = 1 on the outer boundary at x2 + y2 = 1 and
ϕ(0, 0) = 0 on the inner boundary at the origin. We substitute the trial
functions

χα(x, y) = (x2 + y2)α, α > 0, (6.136)

all of which satisfy the boundary data, into the positive functional

J [χ] =

∫

D′

|∇χ|2 dxdy (6.137)

to find J [χα] = 2πα. This number can be made as small as we like, and so
the infimum of the functional J [χ] is zero. But if there is a minimizing ϕ,
then J [ϕ] = 0 implies that ϕ is a constant, and a constant cannot satisfy the
boundary conditions.

An analogous problem reveals itself in three dimensions when the bound-
ary of Ω has a sharp re-entrant spike that is held at a different potential from
the rest of the boundary. In this case we can again find a sequence of trial
functions χ(r) for which J [χ] becomes arbitrarily small, but the sequence of
χ’s has no limit satisfying the boundary conditions. The physics argument
also fails: if we tried to create a physical realization of this situation, the
electric field would become infinite near the spike, and the charge would leak
off and and thwart our attempts to establish the potential difference. For
reasonably smooth boundaries, however, a minimizing function does exist.

The Dirichlet-Poisson problem

−∇2ϕ(r) = f(r), r ∈ Ω,

ϕ(r) = g(r), r ∈ ∂Ω, (6.138)

and the Neumann-Poisson problem

−∇2ϕ(r) = f(r), x ∈ Ω,

(n · ∇)ϕ(r) = g(r), x ∈ ∂Ω

supplemented with the Fredholm constraint

∫

Ω

f dnr +

∫

∂Ω

g dS = 0 (6.139)
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also have solutions when ∂Ω is reasonably smooth. For the Neumann-Poisson
problem, with the Fredholm constraint as stated, the region Ω must be con-
nected, but its boundary need not be. For example, Ω can be the region
between two nested spherical shells.

Exercise 6.5: Why did we insist that the region Ω be connected in our dis-
cussion of the Neumann problem? (Hint: how must we modify the Fredholm
constraint when Ω consists of two or more disconnected regions?)

Exercise 6.6: Neumann variational principles. Let Ω be a bounded and con-
nected three-dimensional region with a smooth boundary. Given a function f
defined on Ω and such that

∫
Ω f d

3r = 0, define the functional

J [χ] =

∫

Ω

{
1

2
|∇χ|2 − χf

}
d3r.

Suppose that ϕ is a solution of the Neumann problem

−∇2ϕ(r) = f(r), r ∈ Ω,

(n · ∇)ϕ(r) = 0, r ∈ ∂Ω.

Show that

J [χ] = J [ϕ] +

∫

Ω

1

2
|∇(χ−ϕ)|2 d3r ≥ J [ϕ] = −

∫

Ω

1

2
|∇ϕ|2 d3r = −1

2

∫

Ω
ϕf d3r.

Deduce that ϕ is determined, up to the addition of a constant, as the function
that minimizes J [χ] over the space of all continuously differentiable χ (and
not just over functions satisfying the Neumann boundary condition.)

Similarly, for g a function defined on the boundary ∂Ω and such that
∫
∂Ω g dS =

0, set

K[χ] =

∫

Ω

1

2
|∇χ|2 d3r −

∫

∂Ω
χg dS.

Now suppose that φ is a solution of the Neumann problem

−∇2φ(r) = 0, r ∈ Ω,

(n · ∇)φ(r) = g(r), r ∈ ∂Ω.

Show that

K[χ] = K[φ]+

∫

Ω

1

2
|∇(χ−φ)|2 d3r ≥ K[φ] = −

∫

Ω

1

2
|∇φ|2 d3r = −1

2

∫

∂Ω
φg dS.
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Deduce that φ is determined up to a constant as the function that minimizes
K[χ] over the space of all continuously differentiable χ (and, again, not just
over functions satisfying the Neumann boundary condition.)

Show that when f and g fail to satisfy the integral conditions required for
the existence of the Neumann solution, the corresponding functionals are not
bounded below, and so no minimizing function can exist.

Exercise 6.7: Helmholtz decomposition Let Ω be a bounded connected three-
dimensional region with smooth boundary ∂Ω.

a) Cite the conditions for the existence of a solution to a suitable Neumann
problem to show that if u is a smooth vector field defined in Ω, then
there exist a unique solenoidal (i.e having zero divergence) vector field
v with v · n = 0 on the boundary ∂Ω, and a unique (up to the addition
of a constant) scalar field φ such that

u = v +∇φ.
Here n is the outward normal to the (assumed smooth) bounding surface
of Ω.

b) In many cases (but not always) we can write a solenoidal vector field v

as v = curlw. Again by appealing to the conditions for existence and
uniqueness of a Neumann problem solution, show that if we can write
v = curlw, then w is not unique, but we can always make it unique by
demanding that it obey the conditions div w = 0 and w · n = 0.

c) Appeal to the Helmholtz decomposition of part a) with u→ (v · ∇)v to
show that in the Euler equation

∂v

∂t
+ (v · ∇)v = −∇P, v · n = 0 on ∂Ω

governing the motion of an incompressible (divv = 0) fluid the instan-
taneous flow field v(x, y, z, t) uniquely determines ∂v/∂t, and hence the
time evolution of the flow. (This observation provides the basis of prac-
tical algorithms for computing incompressible flows.)

We can always write the solenoidal field as v = curlw + h, where h obeys
∇2h = 0 with suitable boundary conditions. See exercise 6.16.

6.5.2 Separation of variables

Cartesian coordinates

When the region of interest is a square or a rectangle, we can solve Laplace
boundary problems by separating the Laplace operator in cartesian co-ordinates.
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Let

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, (6.140)

and write

ϕ = X(x)Y (y), (6.141)

so that

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= 0. (6.142)

Since the first term is a function of x only, and the second of y only, both
must be constants and the sum of these constants must be zero. Therefore

1

X

∂2X

∂x2
= −k2,

1

Y

∂2Y

∂y2
= k2, (6.143)

or, equivalently

∂2X

∂x2
+ k2X = 0,

∂2Y

∂y2
− k2Y = 0. (6.144)

The number that we have, for later convenience, written as k2 is called a
separation constant . The solutions are X = e±ikx and Y = e±ky. Thus

ϕ = e±ikxe±ky, (6.145)

or a sum of such terms where the allowed k’s are determined by the boundary
conditions.

How do we know that the separated form X(x)Y (y) captures all possible
solutions? We can be confident that we have them all if we can use the sep-
arated solutions to solve boundary-value problems with arbitrary boundary
data.
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L

x

y

L

Figure 6.15: Square region.

We can use our separated solutions to construct the unique harmonic
function taking given values on the sides a square of side L shown in figure
6.15. To see how to do this, consider the four families of functions

ϕ1,n =

√
2

L

1

sinh nπ
sin

nπx

L
sinh

nπy

L
,

ϕ2,n =

√
2

L

1

sinh nπ
sinh

nπx

L
sin

nπy

L
,

ϕ3,n =

√
2

L

1

sinh nπ
sin

nπx

L
sinh

nπ(L− y)
L

,

ϕ4,n =

√
2

L

1

sinh nπ
sinh

nπ(L− x)
L

sin
nπy

L
. (6.146)

Each of these comprises solutions to ∇2ϕ = 0. The family ϕ1,n(x, y) has been
constructed so that every member is zero on three sides of the square, but
on the side y = L it becomes ϕ1,n(x, L) =

√
2/L sin(nπx/L). The ϕ1,n(x, L)

therefore constitute an complete orthonormal set in terms of which we can
expand the boundary data on the side y = L. Similarly, the other other
families are non-zero on only one side, and are complete there. Thus, any
boundary data can be expanded in terms of these four function sets, and the
solution to the boundary value problem is given by a sum

ϕ(x, y) =

4∑

m=1

∞∑

n=1

am,nϕm,n(x, y). (6.147)
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The solution to ∇2ϕ = 0 in the unit square with ϕ = 1 on the side y = 1
and zero on the other sides is, for example,

ϕ(x, y) =
∞∑

n=0

4

(2n+ 1)π

1

sinh(2n + 1)π
sin
(
(2n+ 1)πx

)
sinh

(
(2n+ 1)πy

)

(6.148)
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Figure 6.16: Plot of first thiry terms in equation (6.148).

For cubes, and higher dimensional hypercubes, we can use similar bound-
ary expansions. For the unit cube in three dimensions we would use

ϕ1,nm(x, y, x) =
1

sinh
(
π
√
n2 +m2

) sin(nπx) sin(mπy) sinh
(
πz
√
n2 +m2

)
,

to expand the data on the face z = 1, together with five other solution
families, one for each of the other five faces of the cube.

If some of the boundaries are at infinity, we may need only need some of
these functions.

Example: Figure 6.17 shows three conducting sheets, each infinite in the z
direction. The central one has width a, and is held at voltage V0. The outer
two extend to infinity also in the y direction, and are grounded. The resulting
potential should tend to zero as |x|, |y| → ∞.
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V0

x

y

z

a

O

Figure 6.17: Conducting sheets.

The voltage in the x = 0 plane is

ϕ(0, y, z) =

∫ ∞

−∞

dk

2π
a(k)e−iky, (6.149)

where

a(k) = V0

∫ a/2

−a/2
eiky dy =

2V0

k
sin(ka/2). (6.150)

Then, taking into account the boundary condition at large x, the solution to
∇2ϕ = 0 is

ϕ(x, y, z) =

∫ ∞

−∞

dk

2π
a(k)e−ikye−|k||x|. (6.151)

The evaluation of this integral, and finding the charge distribution on the
sheets, is left as an exercise.

The Cauchy problem is ill-posed

Although the Laplace equation has no characteristics, the Cauchy data prob-
lem is ill-posed , meaning that the solution is not a continuous function of the
data. To see this, suppose we are given ∇2ϕ = 0 with Cauchy data on y = 0:

ϕ(x, 0) = 0,

∂ϕ

∂y

∣∣∣∣
y=0

= ε sin kx. (6.152)
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Then
ϕ(x, y) =

ε

k
sin(kx) sinh(ky). (6.153)

Provided k is large enough — even if ε is tiny — the exponential growth of the
hyperbolic sine will make this arbitrarily large. Any infinitesimal uncertainty
in the high frequency part of the initial data will be vastly amplified, and
the solution, although formally correct, is useless in practice.

Polar coordinates

We can use the separation of variables method in polar coordinates. Here,

∇2χ =
∂2χ

∂r2
+

1

r

∂χ

∂r
+

1

r2

∂2χ

∂θ2
. (6.154)

Set
χ(r, θ) = R(r)Θ(θ). (6.155)

Then ∇2χ = 0 implies

0 =
r2

R

(
∂2R

∂r2
+

1

r

∂R

∂r

)
+

1

Θ

∂2Θ

∂θ2

= m2 − m2, (6.156)

where in the second line we have written the separation constant as m2.
Therefore,

d2Θ

dθ2
+m2Θ = 0, (6.157)

implying that Θ = eimθ, where m must be an integer if Θ is to be single-
valued, and

r2d
2R

dr2
+ r

dR

dr
−m2R = 0, (6.158)

whose solutions are R = r±m when m 6= 0, and 1 or ln r when m = 0. The
general solution is therefore a sum of these

χ = A0 +B0 ln r +
∑

m6=0

(Amr
|m| +Bmr

−|m|)eimθ. (6.159)

The singular terms, ln r and r−|m|, are not solutions at the origin, and should
be omitted when that point is part of the region where ∇2χ = 0.
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Example: Dirichlet problem in the interior of the unit circle. Solve ∇2χ = 0
in Ω = {r ∈ R2 : |r| < 1} with χ = f(θ) on ∂Ω ≡ {|r| = 1}.

r,θ

θ’

Figure 6.18: Dirichlet problem in the unit circle.

We expand

χ(r.θ) =
∞∑

m=−∞
Amr

|m|eimθ, (6.160)

and read off the coefficients from the boundary data as

Am =
1

2π

∫ 2π

0

e−imθ
′

f(θ′) dθ′. (6.161)

Thus,

χ =
1

2π

∫ 2π

0

[ ∞∑

m=−∞
r|m|eim(θ−θ′)

]
f(θ′) dθ′. (6.162)

We can sum the geometric series

∞∑

m=−∞
r|m|eim(θ−θ′) =

(
1

1− rei(θ−θ′) +
re−i(θ−θ

′)

1− re−i(θ−θ′)
)

=
1− r2

1− 2r cos(θ − θ′) + r2
. (6.163)

Therefore,

χ(r, θ) =
1

2π

∫ 2π

0

(
1− r2

1− 2r cos(θ − θ′) + r2

)
f(θ′) dθ′. (6.164)
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This expression is known as the Poisson kernel formula. Observe how the
integrand sharpens towards a delta function as r approaches unity, and so
ensures that the limiting value of χ(r, θ) is consistent with the boundary
data.

If we set r = 0 in the Poisson formula, we find

χ(0, θ) =
1

2π

∫ 2π

0

f(θ′) dθ′. (6.165)

We deduce that if ∇2χ = 0 in some domain then the value of χ at a point
in the domain is the average of its values on any circle centred on the chosen
point and lying wholly in the domain.

This average-value property means that χ can have no local maxima or
minima within Ω. The same result holds in Rn, and a formal theorem to this
effect can be proved:
Theorem (The mean-value theorem for harmonic functions): If χ is harmonic
(∇2χ = 0) within the bounded (open, connected) domain Ω ∈ Rn, and is
continuous on its closure Ω, and if m ≤ χ ≤ M on ∂Ω, then m < χ < M
within Ω — unless, that is, m = M , when χ = m is constant.

Pie-shaped regions

α R

Figure 6.19: A pie-shaped region of opening angle α.

Electrostatics problems involving regions with corners can often be under-
stood by solving Laplace’s equation within a pie-shaped region.
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Figure 6.19 shows a pie-shaped region of opening angle α and radius R.
If the boundary value of the potential is zero on the wedge and non-zero on
the boundary arc, we can seek solutions as a sum of r, θ separated terms

ϕ(r, θ) =

∞∑

n=1

anr
nπ/α sin

(
nπθ

α

)
. (6.166)

Here the trigonometric function is not 2π periodic, but instead has been
constructed so as to make ϕ vanish at θ = 0 and θ = α. These solutions
show that close to the edge of a conducting wedge of external opening angle
α, the surface charge density σ usually varies as σ(r) ∝ rα/π−1.

If we have non-zero boundary data on the edge of the wedge at θ = α,
but have ϕ = 0 on the edge at θ = 0 and on the curved arc r = R, then the
solutions can be expressed as a continuous sum of r, θ separated terms

ϕ(r, θ) =
1

2i

∫ ∞

0

a(ν)

(( r
R

)iν
−
( r
R

)−iν) sinh(νθ)

sinh(να)
dν,

=

∫ ∞

0

a(ν) sin[ν ln(r/R)]
sinh(νθ)

sinh(να)
dν. (6.167)

The Mellin sine transformation can be used to computing the coefficient
function a(ν). This transformation lets us write

f(r) =
2

π

∫ ∞

0

F (ν) sin(ν ln r) dν, 0 < r < 1, (6.168)

where

F (ν) =

∫ 1

0

sin(ν ln r)f(r)
dr

r
. (6.169)

The Mellin sine transformation is a disguised version of the Fourier sine
transform of functions on [0,∞). We simply map the positive x axis onto
the interval (0, 1] by the change of variables x = − ln r.

Despite its complexity when expressed in terms of these formulae, the
simple solution ϕ(r, θ) = aθ is often the physically relevant one when the two
sides of the wedge are held at different potentials and the potential is allowed
to vary on the curved arc.
Example: Consider a pie-shaped region of opening angle π and radius R =
∞. This region can be considered to be the upper half-plane. Suppose that
we are told that the positive x axis is held at potential +1/2 and the negative
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x axis is at potential −1/2, and are required to find the potential for positive
y. If we separate Laplace’s equation in cartesian co-ordinates and match to
the boundary data on the x-axes, we end up with

ϕxy(x, y) =
1

π

∫ ∞

0

1

k
e−ky sin(kx) dk.

On the other hand, the function

ϕrθ(r, θ) =
1

π
(π/2− θ)

satisfies both Laplace’s equation and the boundary data. At this point we
ought to worry that we do not have enough data to determine the solution
uniquely — nothing was said in the statement of the problem about the
behavior of ϕ on the boundary arc at infinity — but a little effort shows that

1

π

∫ ∞

0

1

k
e−ky sin(kx) dk =

1

π
tan−1

(
x

y

)
, y > 0,

=
1

π
(π/2− θ),

(6.170)

and so the two expressions for ϕ(x, y) are equal.

6.5.3 Eigenfunction expansions

Elliptic operators are the natural analogues of the one-dimensional linear
differential operators we studied in earlier chapters.

The operator L = −∇2 is formally self-adjoint with respect to the inner
product

〈φ, χ〉 =

∫∫
φ∗χ dxdy. (6.171)

This property follows from Green’s identity

∫∫

Ω

{
φ∗(−∇2χ)− (−∇2φ)∗χ

}
dxdy =

∫

∂Ω

{φ∗(−∇χ)− (−∇φ)∗χ} · nds
(6.172)

where ∂Ω is the boundary of the region Ω and n is the outward normal on
the boundary.
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The method of separation of variables also allows us to solve eigenvalue
problems involving the Laplace operator. For example, the Dirichlet eigen-
value problem requires us to find the eigenfunctions and eigenvalues of the
operator

L = −∇2, D(L) = {φ ∈ L2[Ω] : φ = 0, on ∂Ω}. (6.173)

Suppose Ω is the rectangle 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. The normalized
eigenfunctions are

φn,m(x, y) =

√
4

LxLy
sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (6.174)

with eigenvalues

λn,m =

(
n2π2

L2
x

)
+

(
m2π2

L2
y

)
. (6.175)

The eigenfunctions are orthonormal,

∫
φn,mφn′,m′ dxdy = δnn′δmm′ , (6.176)

and complete. Thus, any function in L2[Ω] can be expanded as

f(x, y) =

∞∑

m,n=1

Anmφn,m(x, y), (6.177)

where

Anm =

∫∫
φn,m(x, y)f(x, y) dxdy. (6.178)

We can find a complete set of eigenfunctions in product form whenever we
can separate the Laplace operator in a system of co-ordinates ξi such that the
boundary becomes ξi = const. Completeness in the multidimensional space
is then guaranteed by the completeness of the eigenfunctions of each one-
dimensional differential operator. For other than rectangular co-ordinates,
however, the separated eigenfunctions are not elementary functions.

The Laplacian has a complete set of Dirichlet eigenfunctions in any region,
but in general these eigenfunctions cannot be written as separated products
of one-dimensional functions.
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6.5.4 Green functions

Once we know the eigenfunctions ϕn and eigenvalues λn for −∇2 in a region
Ω, we can write down the Green function as

g(r, r′) =
∑

n

1

λn
ϕn(r)ϕ

∗
n(r

′).

For example, the Green function for the Laplacian in the entire Rn is given
by the sum over eigenfunctions

g(r, r′) =

∫
dnk

(2π)n
eik·(r−r′)

k2
. (6.179)

Thus

−∇2
rg(r, r

′) =

∫
dnk

(2π)n
eik·(r−r′) = δn(r− r′). (6.180)

We can evaluate the integral for any n by using Schwinger’s trick to turn the
integrand into a Gaussian:

g(r, r′) =

∫ ∞

0

ds

∫
dnk

(2π)n
eik·(r−r′)e−sk

2

=

∫ ∞

0

ds

(√
π

s

)n
1

(2π)n
e−

1
4s

|r−r′|2

=
1

2nπn/2

∫ ∞

0

dt t
n
2
−2e−t|r−r′|2/4

=
1

2nπn/2
Γ
(n

2
− 1
)( |r− r′|2

4

)1−n/2

=
1

(n− 2)Sn−1

(
1

|r− r′|

)n−2

. (6.181)

Here, Γ(x) is Euler’s gamma function:

Γ(x) =

∫ ∞

0

dt tx−1e−t, (6.182)

and

Sn−1 =
2πn/2

Γ(n/2)
(6.183)
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is the surface area of the n-dimensional unit ball.
For three dimensions we find

g(r, r′) =
1

4π

1

|r− r′| , n = 3. (6.184)

In two dimensions the Fourier integral is divergent for small k. We may
control this divergence by using dimensional regularization. We pretend that
n is a continuous variable and use

Γ(x) =
1

x
Γ(x + 1) (6.185)

together with
ax = ea ln x = 1 + a lnx + · · · (6.186)

to to examine the behaviour of g(r, r′) near n = 2:

g(r, r′) =
1

4π

Γ(n/2)

(n/2− 1)

(
1− (n/2− 1) ln(π|r− r′|2) +O

[
(n− 2)2

])

=
1

4π

(
1

n/2− 1
− 2 ln |r− r′| − ln π − γ + · · ·

)
. (6.187)

Here γ = −Γ′(1) = .57721 . . . is the Euler-Mascheroni constant. Although
the pole 1/(n−2) blows up at n = 2, it is independent of position. We simply
absorb it, and the − ln π− γ, into an undetermined additive constant. Once
we have done this, the limit n→ 2 can be taken and we find

g(r, r′) = − 1

2π
ln |r− r′|+ const., n = 2. (6.188)

The constant does not affect the Green-function property, so we can chose
any convenient value for it.

Although we have managed to sweep the small-k divergence of the Fourier
integral under a rug, the hidden infinity still has the capacity to cause prob-
lems. The Green function in R3 allows us to to solve for ϕ(r) in the equation

−∇2ϕ = q(r),

with the boundary condition ϕ(r)→ 0 as |r| → ∞, as

ϕ(r) =

∫
g(r, r′)q(r′) d3r.
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In two dimensions, however we try to adjust the arbitrary constant in (6.188),
the divergence of the logarithm at infinity means that there can be no solution
to the corresponding boundary-value problem unless

∫
q(r) d3r = 0. This is

not a Fredholm-alternative constraint because once the constraint is satisfied
the solution is unique. The two-dimensional problem is therefore patholog-
ical from the viewpoint of Fredholm theory. This pathology is of the same
character as the non-existence of solutions to the three-dimensional Dirichlet
boundary-value problem with boundary spikes. The Fredholm alternative
applies, in general, only to operators a discrete spectrum.

Exercise 6.8: Evaluate our formula for the Rn Laplace Green function,

g(r, r′) =
1

(n− 2)Sn−1|r− r′|n−2

with Sn−1 = 2πn/2/Γ(n/2), for the case n = 1. Show that the resulting
expression for g(x, x′) is not divergent, and obeys

− d2

dx2
g(x, x′) = δ(x− x′).

Our formula therefore makes sense as a Green function — even though the
original integral (6.179) is linearly divergent at k = 0! We must defer an
explanation of this miracle until we discuss analytic continuation in the context
of complex analysis.
(Hint: recall that Γ(1/2) =

√
π)

6.5.5 Boundary-value problems

We now look at how the Green function can be used to solve the interior
Dirichlet boundary-value problem in regions where the method of separation
of variables is not available. Figure 6.20 shows a bounded region Ω possessing
a smooth boundary ∂Ω.
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Ω

r’
r

n

Figure 6.20: Interior Dirichlet problem.

We wish to solve −∇2ϕ = q(r) for r ∈ Ω and with ϕ(r) = f(r) for r ∈ ∂Ω.
Suppose we have found a Green function that obeys

−∇2
rg(r, r

′) = δn(r− r′), r, r′ ∈ Ω, g(r, r′) = 0, r ∈ ∂Ω. (6.189)

We first show that g(r, r′) = g(r′, r) by the same methods we used for one-
dimensional self-adjoint operators. Next we follow the strategy that we used
for one-dimensional inhomogeneous differential equations: we use Lagrange’s
identity (in this context called Green’s theorem) to write

∫

Ω

dnr
{
g(r, r′)∇2

rϕ(r)− ϕ(r)∇2
rg(r, r

′)
}

=

∫

∂Ω

dSr · {g(r, r′)∇rϕ(r)− ϕ(r)∇rg(r, r
′)}, (6.190)

where dSr = n dSr, with n the outward normal to ∂Ω at the point r. The
left hand side is

L.H.S. =

∫

Ω

dnr{−g(r, r′)q(r) + ϕ(r)δn(r− r′)},

= −
∫

Ω

dnr g(r, r′) q(r) + ϕ(r′),

= −
∫

Ω

dnr g(r′, r) q(r) + ϕ(r′). (6.191)

On the right hand side, the boundary condition on g(r, r′) makes the first
term zero, so

R.H.S = −
∫

∂Ω

dSrf(r)(n · ∇r)g(r, r
′). (6.192)
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Therefore,

ϕ(r′) =

∫

Ω

g(r′, r) q(r) dnr −
∫

∂Ω

f(r)(n · ∇r)g(r, r
′) dSr. (6.193)

In the language of chapter 3, the first term is a particular integral and the
second (the boundary integral term) is the complementary function.

Exercise 6.9: Assume that the boundary is a smooth surface, Show that the
limit of ϕ(r′) as r′ approaches the boundary is indeed consistent with the
boundary data f(r′). (Hint: When r, r′ are very close to it, the boundary can
be approximated by a straight line segment, and so g(r, r′) can be found by
the method of images.)

Ω

r

Figure 6.21: Exterior Dirichlet problem.

A similar method works for the exterior Dirichlet problem shown in figure
6.21. In this case we seek a Green function obeying

−∇2
rg(r, r

′) = δn(r− r′), r, r′ ∈ Rn \Ω g(r, r′) = 0, r ∈ ∂Ω. (6.194)

(The notation Rn \Ω means the region outside Ω.) We also impose a further
boundary condition by requiring g(r, r′), and hence ϕ(r), to tend to zero as
|r| → ∞. The final formula for ϕ(r) is the same except for the region of
integration and the sign of the boundary term.

The hard part of both the interior and exterior problems is to find the
Green function for the given domain.
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Exercise 6.10: Suppose that ϕ(x, y) is harmonic in the half-plane y > 0, tends
to zero as y → ∞, and takes the values f(x) on the boundary y = 0. Show
that

ϕ(x, y) =
1

π

∫ ∞

−∞

y

(x− x′)2 + y2
f(x′) dx′, y > 0.

Deduce that the “energy” functional

S[f ]
def
=

1

2

∫

y>0
|∇ϕ|2 dxdy ≡ −1

2

∫ ∞

−∞
f(x)

∂ϕ

∂y

∣∣∣∣
y=0

dx

can be expressed as

S[f ] =
1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dx′dx.

The non-local functional S[f ] appears in the quantum version of the Caldeira-
Leggett model. See also exercise 2.24.

Method of Images

When ∂Ω is a sphere or a circle we can find the Dirichlet Green functions for
the region Ω by using the method of images.

A BO

X

Figure 6.22: Points inverse with respect to a circle.

Figure 6.22 shows a circle of radius R. Given a point B outside the circle,
and a point X on the circle, we construct A inside and on the line OB, so
that ∠OBX = ∠OXA. We now observe that 4XOA is similar to 4BOX,
and so

OA

OX
=

OX

OB
. (6.195)
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Thus, OA × OB = (OX)2 ≡ R2. The points A and B are therefore mutually
inverse with respect to the circle. In particular, the point A does not depend
on which point X was chosen.

Now let AX= ri, BX= r0 and OB= B. Then, using similar triangles
again, we have

AX

OX
=

BX

OB
, (6.196)

or
R

ri
=
B

r0
, (6.197)

and so
1

ri

(
R

B

)
− 1

r0
= 0. (6.198)

Interpreting the figure as a slice through the centre of a sphere of radius R,
we see that if we put a unit charge at B, then the insertion of an image charge
of magnitude q = −R/B at A serves to the keep the entire surface of the
sphere at zero potential.

Thus, in three dimensions, and with Ω the region exterior to the sphere,
the Dirichlet Green function is

gΩ(r, rB) =
1

4π

(
1

|r− rB|
−
(
R

|rB|

)
1

|r− rA|

)
. (6.199)

In two dimensions, we find similarly that

gΩ(r, rB) = − 1

2π

(
ln |r− rB| − ln |r− rA| − ln (|rB|/R)

)
, (6.200)

has gΩ(r, rB) = 0 for r on the circle. Thus, this is the Dirichlet Green function
for Ω, the region exterior to the circle.

We can use the same method to construct the interior Green functions
for the sphere and circle.

6.5.6 Kirchhoff vs. Huygens

Even if we do not have a Green function tailored for the specific region in
which were are interested, we can still use the whole-space Green function
to convert the differential equation into an integral equation, and so make
progress. An example of this technique is provided by Kirchhoff’s partial
justification of Huygens’ construction.
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The Green function G(r, r′) for the elliptic Helmholtz equation

(−∇2 + κ2)G(r, r′) = δ3(r− r′) (6.201)

in R3 is given by

∫
d3k

(2π)3

eik·(r−r′)

k2 + κ2
=

1

4π|r− r′|e
−κ|r−r′|. (6.202)

Exercise 6.11: Perform the k integration and confirm this.

For solutions of the wave equation with e−iωt time dependence, we want
a Green function such that

[
−∇2 −

(
ω2

c2

)]
G(r, r′) = δ3(r− r′), (6.203)

and so we have to take κ2 negative. We therefore have two possible Green
functions

G±(r, r′) =
1

4π|r− r′|e
±ik|r−r′|, (6.204)

where k = |ω|/c. These correspond to taking the real part of κ2 negative, but
giving it an infinitesimal imaginary part, as we did when discussing resolvent
operators in chapter 5. If we want outgoing waves, we must take G ≡ G+.

Now suppose we want to solve

(∇2 + k2)ψ = 0 (6.205)

in an arbitrary region Ω. As before, we use Green’s theorem to write

∫

Ω

{
G(r, r′)(∇2

r + k2)ψ(r)− ψ(r)(∇2
r + k2)G(r, r′)

}
dnx

=

∫

∂Ω

{G(r, r′)∇rψ(r)− ψ(r)∇rG(r, r′)} · dSr (6.206)

where dSr = n dSr, with n the outward normal to ∂Ω at the point r. The
left hand side is

∫

Ω

ψ(r)δn(r− r′) dnx =

{
ψ(r′), r′ ∈ Ω
0, r′ /∈ Ω

(6.207)
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and so

ψ(r′) =

∫

∂Ω

{G(r, r′)(n · ∇x)ψ(r)− ψ(r)(n · ∇r)G(r, r′)} dSr, r′ ∈ Ω.

(6.208)
This must not be thought of as solution to the wave equation in terms of an
integral over the boundary, analogous to the solution (6.193) of the Dirichlet
problem that we found in the last section. Here, unlike that earlier case,
G(r, r′) knows nothing of the boundary ∂Ω, and so both terms in the surface
integral contribute to ψ. We therefore have a formula for ψ(r) in the interior
in terms of both Dirichlet and Neumann data on the boundary ∂Ω, and
giving both over-prescribes the problem. If we take arbitrary values for ψ
and (n · ∇)ψ on the boundary, and plug them into (6.208) so as to compute
ψ(r) within Ω then there is no reason for the resulting ψ(r) to reproduce, as r
approaches the boundary, the values ψ and (n·∇)ψ appearing in the integral.
If we demand that the output ψ(r) does reproduce the input boundary data,
then this is equivalent to demanding that the boundary data come from a
solution of the differential equation in a region encompassing Ω.

B

A

θ
R

n r

r’

Ω

Figure 6.23: Huygens’ construction.

The mathematical inconsistency of assuming arbitrary boundary data
notwithstanding, this is exactly what we do when we follow Kirchhoff and
use (6.208) to provide a justification of Huygens’ construction as used in
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optics. Consider the problem of a plane wave, ψ = eikx, incident on a screen
from the left and passing though the aperture labelled AB in figure 6.23.

We take as the region Ω everything to the right of the obstacle. The Kirch-
hoff approximation consists of assuming that the values of ψ and (n · ∇)ψ
on the surface AB are eikx and −ikeikx, the same as they would be if the
obstacle were not there, and that they are identically zero on all other parts
of the boundary. In other words, we completely ignore any scattering by
the material in which the aperture resides. We can then use our formula to
estimate ψ in the region to the right of the aperture. If we further set

∇rG(r, r′) ≈ ik
(r− r′)

|r− r′|2 e
ik|r−r′|, (6.209)

which is a good approximation provided we are more than a few wavelengths
away from the aperture, we find

ψ(r′) ≈ k

4πi

∫

aperture

eik|r−r′|

|r− r′|(1 + cos θ)dSr. (6.210)

Thus, each part of the wavefront on the surface AB acts as a source for the
diffracted wave in Ω.

This result, although still an approximation, provides two substantial
improvements to the näıve form of Huygens’ construction as presented in
elementary courses:

i) There is factor of (1 + cos θ) which suppresses backward propagating
waves. The traditional exposition of Huygens construction takes no
notice of which way the wave is going, and so provides no explanation
as to why a wavefront does not act a source for a backward wave.

ii) There is a factor of i−1 = e−iπ/2 which corrects a 90◦ error in the phase
made by the näıve Huygens construction. For two-dimensional slit
geometry we must use the more complicated two-dimensional Green
function (it is a Bessel function), and this provides an e−iπ/4 factor
which corrects for the 45◦ phase error that is manifest in the Cornu
spiral of Fresnel diffraction.

For this reason the Kirchhoff approximation is widely used.

Problem 6.12: Use the method of images to construct i) the Dirichlet, and
ii) the Neumann, Green function for the region Ω, consisting of everything to
the right of the screen. Use your Green functions to write the solution to the
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diffraction problem in this region a) in terms of the values of ψ on the aperture
surface AB, b) in terms of the values of (n · ∇)ψ on the aperture surface. In
each case, assume that the boundary data are identically zero on the dark side
of the screen. Your expressions should coincide with the Rayleigh-Sommerfeld
diffraction integrals of the first and second kind, respectively.3 Explore the
differences between the predictions of these two formulæ and that of Kirchhoff
for case of the diffraction of a plane wave incident on the aperture from the
left.

6.6 Further exercises and problems

Problem 6.13: Critical Mass. An infinite slab of fissile material has thickness
L. The neutron density n(x) in the material obeys the equation

∂n

∂t
= D

∂2n

∂x2
+ λn+ µ,

where n(x, t) is zero at the surface of the slab at x = 0, L. Here, D is the
neutron diffusion constant, the term λn describes the creation of new neutrons
by induced fission, and the constant µ is the rate of production per unit volume
of neutrons by spontaneous fission.

a) Expand n(x, t) as a series,

n(x, t) =
∑

m

am(t)ϕm(x),

where the ϕm(x) are a complete set of functions you think suitable for
solving the problem.

b) Find an explicit expression for the coefficients am(t) in terms of their
intial values am(0).

c) Determine the critical thickness Lcrit above which the slab will explode.
d) Assuming that L < Lcrit, find the equilibrium distribution neq(x) of

neutrons in the slab. (You may either sum your series expansion to get an
explicit closed-form answer, or use another (Green function?) method.)

Problem 6.14: Semi-infinite Rod. Consider the heat equation

∂θ

∂t
= D∇2θ, 0 < x <∞,

with the temperature θ(x, t) obeying the initial condition θ(x, 0) = θ0 for
0 < x <∞, and the boundary condition θ(0, t) = 0.

3M. Born and E. Wolf Principles of Optics 7th (expanded) edition, section 8.11.
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a) Show that the boundary condition at x = 0 may be satisfied at all times
by introducing a suitable mirror image of the initial data in the region
−∞ < x < 0, and then applying the heat kernel for the entire real
line to this extended initial data. Show that the resulting solution of the
semi-infinite rod problem can be expressed in terms of the error function

erf (x)
def
=

2√
π

∫ x

0
e−ξ

2

dξ,

as

θ(x, t) = θ0 erf

(
x√
4t

)
.

b) Solve the same problem by using a Fourier integral expansion in terms
of sin kx on the half-line 0 < x < ∞ and obtaining the time evolution
of the Fourier coefficients. Invert the transform and show that your
answer reduces to that of part a). (Hint: replace the initial condition by
θ(x, 0) = θ0e

−εx, so that the Fourier transform converges, and then take
the limit ε→ 0 at the end of your calculation.)

Exercise 6.15: Seasonal Heat Waves. Suppose that the measured temperature
of the air above the arctic permafrost at time t is expressed as a Fourier series

θ(t) = θ0 +

∞∑

n=1

θn cosnωt,

where the period T = 2π/ω is one year. Solve the heat equation for the soil
temperature,

∂θ

∂t
= κ

∂2θ

∂z2
, 0 < z <∞

with this boundary condition, and find the temperature θ(z, t) at a depth z
below the surface as a function of time. Observe that the sub-surface temper-
ature fluctuates with the same period as that of the air, but with a phase lag
that depends on the depth. Also observe that the longest-period temperature
fluctuations penetrate the deepest into the ground. (Hint: for each Fourier
component, write θ as Re[An(z) exp inωt], where An is a complex function of
z.)

The next problem is an illustration of a Dirichlet principle.

Exercise 6.16: Helmholtz-Hodge decomposition. Given a three-dimensional
region Ω with smooth boundary ∂Ω, introduce the real Hilbert space L2

vec(Ω)
of finite-norm vector fields, with inner product

〈u,v〉 =

∫

Ω
u · v d3x.
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Consider the spaces L = {v : v = ∇φ} and T = {v : v = curlw} consisting
of vector fields in L2

vec(Ω) that can can be written as gradients and curls,
respectively. (Strictly speaking, we should consider the completions of these
spaces.)

a) Show that if we demand that either (or both) of φ and the tangential
component of w vanish on ∂Ω, then the two spaces L and T are mutually
orthogonal with respect to the the L2

vec(Ω) inner product.

Let u ∈ L2
vec(Ω). We will try to express u as the sum of a gradient and a curl

by seeking to make the distance functional

Fu[φ,w] = ‖u−∇φ− curlw‖2
def
=

∫

Ω
|u−∇φ− curlw|2 d3x

equal to zero.

b) Show that if we find a w and φ that minimize Fu[φ,w], then the residual
vector field

h
def
= u−∇φ− curlw

obeys curlh = 0 and divh = 0, together with boundary conditions
determined by the constraints imposed on φ and w:

i) If φ is unconstrained on ∂Ω, but the tangential boundary component
of w is required to vanish, then the component of h normal to the
boundary must be zero.

ii) If φ = 0 on ∂Ω, but the tangential boundary component of w is
unconstrained, then the tangential boundary component of h must
be zero.

iii) If φ = 0 on ∂Ω and also the tangential boundary component of w is
required to vanish, then h need satisfy no boundary condition.

c) Assuming that we can find suitable minimizing φ and w, deduce that
under each of the three boundary conditions of the previous part, we
have a Helmholtz-Hodge decomposition

u = ∇φ+ curlw + h

into unique parts that are mutually L2
vec(Ω) orthogonal. Observe that

the residual vector field h is harmonic — i.e. it satisfies the equation
∇2h = 0, where

∇2h
def
= ∇(divh)− curl (curlh)

is the vector Laplacian acting on h.
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If u is sufficiently smooth, there will exist φ and w that minimize the distance
‖u−∇φ− curlw‖ and satisfy the boundary conditions. Whether or not h is
needed in the decomposition is another matter. It depends both on how we
constrain φ and w, and on the topology of Ω. At issue is whether or not the
boundary conditions imposed on h are sufficient to force it to be zero. If Ω
is the interior of a torus, for example, then h can be non-zero whenever its
tangential component is unconstrained.

The Helmholtz-Hodge decomposition is closely related to the vector-field
eigenvalue problems commonly met with in electromagnetism or elasticity.
The next few exercises lead up to this connection.

Exercise 6.17: Self-adjointness and the vector Laplacian. Consider the vector
Laplacian (defined in the previous problem) as a linear operator on the Hilbert
space L2

vec(Ω) .

a) Show that
∫

Ω
d3x

{
u · (∇2v) − v · (∇2u)

}
=

∫

∂Ω
{(n · u) div v− (n · v) div u

−u · (n× curlv) + v · (n× curlu)} dS

b) Deduce from the identity in part a) that the domain of ∇2 coincides
with the domain of (∇2)†, and hence the vector Laplacian defines a truly
self-adjoint operator with a complete set of mutually orthogonal eigen-
functions, when we take as boundary conditions one of the following:
o) Dirichlet-Dirichlet: n · u = 0 and n× u = 0 on ∂Ω,
i) Dirichlet-Neumann: n · u = 0 and n× curlu = 0 on ∂Ω,
ii) Neumann-Dirichlet: divu = 0 and n× u = 0 on ∂Ω,
iii) Neumann-Neumann: div u = 0 and n× curlu = 0 on ∂Ω.

c) Show that the more general Robin boundary conditions

α(n · u) + β divu = 0,

λ(n× u) + µ(n× curlu) = 0,

where α β, µ ν can be position dependent, also give rise to a truly self-
adjoint operator.

Problem 6.18: Cavity electrodynamics and the Hodge-Weyl decomposition.
Each of the self-adjoint boundary conditions in the previous problem gives
rise to a complete set of mutually orthogonal vector eigenfunctions obeying

−∇2un = k2
nun.
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For these eigenfunctions to describe the normal modes of the electric field E

and the magnetic field B (which we identify with H as we will use units in
which µ0 = ε0 = 1) within a cavity bounded by a perfect conductor, we need
to additionally impose the Maxwell equations divB = divE = 0 everywhere
within Ω, and to satisfy the perfect-conductor boundary conditions n × E =
n ·B = 0.

a) For each eigenfunction un corresponding to a non-zero eigenvalue k2
n,

define

vn =
1

k2
n

curl (curlun), wn = − 1

k2
n

∇(div un),

so that un = vn + wn. Show that vn and wm are, if non-zero, each
eigenfunctions of −∇2 with eigenvalue k2

n. The vector eigenfunctions
that are not in the null-space of ∇2 can therefore be decomposed into
their transverse (the vn, which obey divvn = 0) and longitudinal (the
wn, which obey curlwn = 0) parts. However, it is not immediately clear
what boundary conditions the vn and wn separately obey.

b) The boundary-value problems of relevance to electromagnetism are:

i)

{
−∇2hn = k2

nhn, within Ω,
n · hn = 0, n× curlhn = 0, on ∂Ω;

ii)

{
−∇2en = k2

nen, within Ω,
div en = 0, n× en = 0, on ∂Ω;

iii)

{
−∇2bn = k2

nbn, within Ω,
divbn = 0, n× curlbn = 0, on ∂Ω,

These problems involve, respectively, the Dirichlet-Neumann, Neumann-
Dirichlet, and Neumann-Neumann boundary conditions from the previ-
ous problem.
Show that the divergence-free transverse eigenfunctions

Hn
def
=

1

k2
n

curl (curlhn), En
def
=

1

k2
n

curl (curl en), Bn
def
=

1

k2
n

curl (curlbn),

obey n ·Hn = n×En = n× curlBn = 0 on the boundary, and that from
these and the eigenvalue equations we can deduce that n × curlHn =
n·Bn = n·curlEn = 0 on the boundary. The perfect-conductor boundary
conditions are therefore satisfied.
Also show that the corresponding longitudinal eigenfunctions

ηn
def
=

1

k2
n

∇(divhn), εn
def
=

1

k2
n

∇(div en), βn
def
=

1

k2
n

∇(divbn)

obey the boundary conditions n · ηn = n× εn = n× βn = 0.
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c) By considering the counter-example provided by a rectangular box, show
that the Dirichlet-Dirichlet boundary condition is not compatible with a
longitudinal+transverse decomposition. (A purely transverse wave inci-
dent on such a boundary will, on reflection, acquire a longitudinal com-
ponent.)

d) Show that

0 =

∫

Ω
ηn ·Hm d

3x =

∫

Ω
εn · Em d

3x =

∫

Ω
βn ·Bm d

3x,

but that the vn and wn obtained from the Dirichlet-Dirichlet boundary
condition un’s are not in general orthogonal to each other. Use the
continuity of the L2

vec(Ω) inner product

xn → x ⇒ 〈xn,y〉 → 〈x,y〉

to show that this individual-eigenfunction orthogonality is retained by
limits of sums of the eigenfunctions. Deduce that, for each of the bound-
ary conditions i)-iii) (but not for the Dirichlet-Dirichlet case), we have
the Hodge-Weyl decomposition of L2

vec(Ω) as the orthogonal direct sum

L2
vec(Ω) = L⊕ T ⊕N ,

where L, T are respectively the spaces of functions representable as in-
finite sums of the longitudinal and transverse eigenfunctions, and N is
the finite-dimensional space of harmonic (nullspace) eigenfunctions.

Complete sets of vector eigenfunctions for the interior of a rectangular box,
and for each of the four sets of boundary conditions we have considered, can
be found in Morse and Feshbach §13.1.

Problem 6.19: Hodge-Weyl and Helmholtz-Hodge. In this exercise we consider
the problem of what classes of vector-valued functions can be expanded in
terms of the various families of eigenfunctions of the previous problem. It is
tempting (but wrong) to think that we are restricted to expanding functions
that obey the same boundary conditions as the eigenfunctions themselves.
Thus, we might erroniously expect that the En are good only for expanding
functions whose divergence vanishes and have vanishing tangential boundary
components, or that the ηn can expand out only curl-free vector fields with
vanishing normal boundary component. That this supposition can be false
was exposed in section 2.2.3, where we showed that functions that are zero at
the endpoints of an interval can be used to expand out functions that are not
zero there. The key point is that each of our four families of un constitute
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a complete orthonormal set in L2
vec(Ω), and can therefore be used expand

any vector field. As a consequence, the infinite sum
∑
anBn ∈ T can, for

example, represent any vector-valued function u ∈ L2
vec(Ω) provided only that

u possesses no component lying either in the subspace L of the longitudinal
eigenfunctions βn, or in the nullspace N .

a) Let T =< En > be space of functions representable as infinite sums of
the En. Show that

< En >
⊥ = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω}.

Find the corresponding perpendicular spaces for each of the other eight
orthogonal decomposition spaces.

b) Exploit your knowledge of < En >
⊥ acquired in part (a) to show that

< En > itself is the Hilbert space

< En >= {u : div u = 0 within Ω, no condition on ∂Ω}.

Similarly show that

< εn > = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω},
< ηn > = {u : curlu = 0 within Ω, no condition on ∂Ω},
< Hn > = {u : div u = 0 within Ω, n · u = 0 on ∂Ω},
< βn > = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω},
< Bn > = {u : div u = 0 within Ω, n · u = 0 on ∂Ω}.

c) Conclude from the previous part that any vector vector field u ∈ L2
vec(Ω)

can be uniquely decomposed as the L2
vec(Ω) orthogonal sum

u = ∇φ+ curlw + h,

where ∇φ ∈ L, curlw ∈ T , and h ∈ N , under each of the following sets
of conditions:

i) The scalar φ is unrestricted, but w obeys n × w = 0 on ∂Ω, and
the harmonic h obeys n · h = 0 on ∂Ω. (The condition on w makes
curlw have vanishing normal boundary component.)

ii) The scalar φ is zero on ∂Ω, while w is unrestricted on ∂Ω. The
harmonic h obeys n× h = 0 on ∂Ω. (The condition on φ makes ∇φ
have zero tangential boundary component.)

iii) The scalar φ is zero on ∂Ω, the vector w obeys n × w = 0 on
∂Ω, while the harmonic h requires no boundary condition. (The
conditions on φ and w make ∇φ have zero tangential boundary
component and curlw have vanishing normal boundary component.)



256 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

d) As an illustration of the practical distinctions between the decomposi-
tions in part (c), take Ω to be the unit cube in R3, and u = (1, 0, 0) a
constant vector field. Show that with conditions (i) we have u ∈ L, but
for (ii) we have u ∈ T , and for (iii) we have u ∈ N .

We see that the Hodge-Weyl decompositions of the eigenspaces correspond
one-to-one with the Helmholtz-Hodge decompositions of problem 6.16.


