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Do it again!

Isabelle, age 3

(R. Mainieri and P. Cvitanović)

The time parameter in the Section 2.1 definition of a dynamical system
can be either continuous or discrete. Discrete time dynamical systems
arise naturally from flows; one can observe the flow at fixed time intervals
(by strobing it), or one can record the coordinates of the flow when a
special event happens (the Poincaré section method). This triggering
event can be as simple as vanishing of one of the coordinates, or as
complicated as the flow cutting through a curved hypersurface.

3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a (d − 1)-
dimensional hypersurface or a set of hypersurfaces P embedded in the
d-dimensional state space M, define the Poincaré return map P (x), a
(d − 1)-dimensional map of form

x′ = P (x) = f τ(x)(x) , x′, x ∈ P . (3.1)

Here the first return function τ(x)–sometimes referred to as the ceil-
ing function–is the time of flight to the next section for a trajectory
starting at x. The choice of the section hypersurface P is altogether
arbitrary. It is rarely possible to define a single section that cuts across
all trajectories. In practice one often needs only a local section–a finite
hypersurface of codimension 1 volume intersected by a ray of trajecto-
ries near to the trajectory of interest. The hypersurface can be specified
implicitly through a function U(x) that is zero whenever a point x is on
the Poincaré section,

x ∈ P iff U(x) . (3.2)

The gradient of U(x) evaluated at x ∈ P serves a two-fold function.
First, the flow should pierce the hypersurface P , rather than being tan-
gent to it. A nearby point x+δx is in the hypersurface P if U(x+δx) = 0.
A nearby point on the trajectory is given by δx = vδt, so a traversal is
ensured by the transversality condition

(v · ∂U) =
d∑

j=1

vj(x)∂jU(x) 	= 0 , ∂jU(x) =
d

dxj
U(x) , x ∈ P . (3.3)
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Second, the gradient ∂jU defines the orientation of the hypersurface P .
The flow is oriented as well, and a periodic orbit can pierce P twice,
traversing it in either direction, as in Fig. 3.1. Hence the defini-
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Fig. 3.1 A x(t) trajectory that
intersects a Poincaré section P at
times t1, t2, t3, t4, and closes a cycle
(x1, x2, x3, x4), xk = x(tk) ∈ P of
topological length 4 with respect to this
section. Note that the intersections are
not normal to the section, and that the
crossing z does not count, as it in the
wrong direction.

tion of Poincaré return map P (x) needs to be supplemented with the
orientation condition

xn+1 = P (xn) , U(xn+1) = U(xn) = 0 , n ∈ Z
+

d∑
j=1

vj(xn)∂jU(xn) > 0 . (3.4)

In this way the continus time t flow f t(x) is reduced to a discrete time
n sequence xn of successive oriented trajectory traversals of P .

With a sufficiently clever choice of a Poincaré section or a set of sec-
tions, any orbit of interest intersects a section. Depending on the ap-
plication, one might need to convert the discrete time n back to the
continuous flow time. This is accomplished by adding up the first re-
turn function times τ(xn), with the accumulated flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a
similar manner, and will need to be evaluated in the process of evaluating
dynamical averages.Chapter ??

A few examples may help visualize this.

Example 3.1 Hyperplane P:
The simplest choice of a Poincaré section is a plane specified by a point

(located at the tip of the vector r0) and a direction vector a perpendicular to
the plane. A point x is in this plane if it satisfies the condition

U(x) = (x− r0) · a = 0 . (3.6)

Consider a circular periodic orbit centered at r0, but not lying in P . It pierces

the hyperplane twice; the (v · a) > 0 traversal orientation condition (3.4)

ensures that the first return time is the full period of the cycle.

Example 3.2 Pendulum:
The phase space of a simple pendulum is 2-dimensional: momentum on the
vertical axis and position on the horizontal axis. We choose the Poincaré
section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion
is oscillatory, in the pendulum all orbits are loops, so any trajectory will
periodically intersect the line, that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system

plotted in Fig. 2.2. Now every trajectory is an inward spiral, and the trajectory

will intersect the Poincaré section y = 0 at a series of points that get closer

and closer to either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on
a piece of paper. The next example offers a better illustration of the
utility of visualization of dynamics by means of Poincaré sections.
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Fig. 3.2 (Right:) a sequence of Poincaré sections of the Rössler strange attractor,
defined by planes through the z axis, oriented at angles (a) −60o (b) 0o, (c) 60o, (d)
120o, in the x-y plane. (Left:) side and x-y plane view of a typical trajectory with
Poincaré sections superimposed. (Rytis Paškauskas)
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Fig. 3.3 Return maps for the Rn → Rn+1 radial distance Poincaré sections of
Fig. 3.1. (Rytis Paškauskas)

Example 3.3 Rössler flow:
Consider Fig. 2.3, a typical trajectory of the 3-dimensional Rössler flow

(2.14). It wraps around the z axis, so a good choice for a Poincaré section is a
plane passing through the z axis. A sequence of such Poincaré sections placed
radially at increasing angles with respect to the x axis, Fig. 3.1, illustrates
the ‘stretch & fold’ action of the Rössler flow. To orient yourself, compare
this with Fig. 2.3, and note the different z-axis scales. Figure 3.1 assembles
these sections into a series of snapshots of the flow. A line segment [A,B],
traversing the width of the attractor, starts out close to the x-y plane, and
after the stretching (a) → (b) followed by the folding (c) → (d), the folded
segment returns close to the x-y plane strongly compressed. In one Poincaré
return the [A,B] interval is stretched, folded and mapped onto itself, so the
flow is expanding. It is also mixing, as in one Poincaré return the point C
from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return

map (3.1), as in Fig. 3.1. Cases (a) and (d) are examples of nice 1-to-1 return

maps. However, (b) and (c) appear multimodal and non-invertible, artifacts of

projection of a 2-d return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional

subspace Rn → Rn+1. (continued in Example 4.1)

fast track:

Section 3.3, p. 50
The above examples illustrate why a Poincaré section gives a more in-

formative snapshot of the flow than the full flow portrait. For example,
while the full flow portrait of the Rössler flow Fig. 2.3 gives us no sense
of the thickness of the attractor, we see clearly in the Fig. ?? Poincaré
sections that even though the return map is 2-d → 2-d, the flow con-
traction is so strong that for all practical purposes it renders the return
map 1-dimensional.

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not
available in analytic form. We describe here a numerical method for
determining a Poincaré section.Remark 3.5
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Consider the system (2.5) of ordinary differential equations in the
vector variable x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.7)

where the flow velocity v is a vector function of the position in state
space x and the time t. In general v cannot be integrated analytically
and we will have to resort to numerical integration to determine the tra-
jectories of the system. Our task is to determine the points at which the
numerically integrated trajectory traverses a given hypersurface. The
hypersurface will be specified implicitly through a function U(x) that is
zero whenever a point x is on the Poincaré section, such as the hyper-
plane (3.6).

If we use a tiny step size in our numerical integrator, we can observe
the value of U as we integrate; its sign will change as the trajectory
crosses the hypersurface. The problem with this method is that we have
to use a very small integration time step. In order to actually land on the
Poincaré section one might try to interpolate the intersection point from
the two trajectory points on either side of the hypersurface. However,
there is a better way.

Let ta be the time just before U changes sign, and tb the time just
after it changes sign. The method for landing exactly on the Poincaré
section will be to convert one of the space coordinates into an integration
variable for the part of the trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.8)

we can rewrite the equations of motion (3.7) as

dt

dx1
=

1
v1

, · · · ,
dxd

dx1
=

vd

v1
. (3.9)

Now we use x1 as the ‘time’ in the integration routine and integrate
it from x1(ta) to the value of x1 on the hypersurface, which can be
found from the hypersurface intersection condition (3.6). The quantity
x1 need not be perpendicular to the Poincaré section; any xi can be
chosen as the integration variable, privided the xi-axis is not parallel to
the Poincaré section at the trajectory intersection point. If the section
crossing is transverse (see (3.3)), v1 cannot vanish in the short segment
bracketed by the integration step preceeding the section, and the point
on the Poincaré section.

Example 3.4 Computation of Rössler flow Poincaré sections.
Poincaré sections of Fig. 3.1 are defined by the fixing angle U(x) = θ−θ0 = 0.
Convert Rössler equation (2.14) to cylindrical coordinates:

ṙ = υr = −z cos θ + ar sin2 θ

θ̇ = υθ = 1 +
z

r
sin θ +

a

2
sin 2θ

ż = υz = b+ z(r cos θ − c) (3.10)
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For parameter values (2.14), and (x0, y0, z0) sufficiently far away from the
inner equilibrium, θ increases monotonically. Integrate

dr

dθ
= υr/υθ ,

dt

dθ
= 1/υθ ,

dz

dθ
= υz/υθ (3.11)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integra-

tion back to (x, y, z) coordinates. (Radford Mitchell,

Jr.)

3.3 Maps

Though we have motivated discrete time dynamics by considering sec-
tions of a continuous flow, there are many settings in which dynamics
is inherently discrete, and naturally described by repeated iterations of
the same map

f : M → M ,

or sequences of consecutive applications of a finite set of maps,

{fA, fB, . . . fZ} : M → M , (3.12)

for example maps relating different sections among a set of Poincaré sec-
tions. The discrete ‘time’ is then an integer, the number of applications
of a map. As writing out formulas involving repeated applications of a
set of maps explicitly can be awkward, we streamline the notation by
denoting a map composition by ‘◦’

fZ(· · · fB(fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.13)

and the nth iterate of map f by

fn(x) = f ◦ fn−1(x) = f
(
fn−1(x)

)
, f0(x) = x .

The trajectory of x is the set of pointsSection 2.1 {
x, f(x), f2(x), . . . , fn(x)

}
,

and the orbit of x is the subset of all points of M that can be reached
by iterations of f . For example, the orbit of x1 in Fig. 3.4 is the 4-cycle
(x1, x2, x3, x4) .
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Fig. 3.4 A flow x(t) of Fig. 3.1 repre-
sented by a Poincaré return map that
maps points in the Poincaré section P
as xn+1 = f(xn) . In this example the
orbit of x1 consists of the four cycle
points (x1, x2, x3, x4)

The functional form of such Poincaré return maps P as Fig. 3.1 can be
approximated by tabulating the results of integration of the flow from
x to the first Poincaré section return for many x ∈ P , and constructing
a function that interpolates through these points. If we find a good
approximation to P (x), we can get rid of numerical integration alto-
gether, by replacing the continuous time trajectory f t(x) by iteration of
the Poincaré return map P (x). Constructing accurate P (x) for a given
flow can be tricky, but we can already learn much from approximate
Poincaré return maps. Multinomial approximations

Pk(x) = ak +
d∑

j=1

bkjxj +
d∑

i,j=1

ckijxixj + . . . , x ∈ P (3.14)
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to Poincaré return maps⎛
⎜⎝

x1,n+1

x2,n+1

. . .
xd,n+1

⎞
⎟⎠ =

⎛
⎜⎝

P1(xn)
P2(xn)

. . .
Pd(xn)

⎞
⎟⎠ , xn, xn+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon
map.

Example 3.5 Hénon map:
The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.15)

is a nonlinear 2-dimensional map most frequently employed in testing various
hunches about chaotic dynamics. The Hénon map is sometimes written as a
2-step recurrence relation

xn+1 = 1 − ax2
n + bxn−1 . (3.16)

An n-step recurrence relation is the discrete-time analogue of an nth order dif-
ferential equation, and it can always be replaced by a set of n 1-step recurrence
relations.

The Hénon map is the simplest map that captures the ‘stretch & fold’
dynamics of return maps such as Rössler’s, Fig. 3.1. It can be obtained by a
truncation of a polynomial approximation (3.14) to a Poincaré return map to
second order.

A quick sketch of the long-time dynamics of such a mapping (an example
is depicted in Fig. 3.5), is obtained by picking an arbitrary starting point and
iterating (3.15) on a computer. We plot here the dynamics in the (xn, xn+1)
plane, rather than in the (xn, yn) plane, because we think of the Hénon map as
a model return map xn → xn+1. As we shall soon see, periodic orbits will be

3.5, page 54key to understanding the long-time dynamics, so we also plot a typical periodic
orbit of such a system, in this case an unstable period 7 cycle. Numerical
determination of such cycles will be explained in Section ?? , and the cycle
point labels 0111010, 1110100, · · · in Section ??.
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Fig. 3.5 The strange attractor and
an unstable period 7 cycle of the
Hénon map (3.15) with a = 1.4, b =
0.3. The periodic points in the cy-
cle are connected to guide the eye.
(K.T. Hansen [7])

Example 3.6 Lozi map:
Another example frequently employed is the Lozi map, a linear, ‘tent map’
version of the Hénon map given by

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.17)

Though not realistic as an approximation to a smooth flow, the Lozi map is

a very helpful tool for developing intuition about the topology of a large class

of maps of the ‘stretch & fold’ type.

What we get by iterating such maps is–at least qualitatively–not un-
like what we get from Poincaré section of flows such as the Rössler flow
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Figs. 3.1 and ?? For an arbitrary initial point this process might con-
verge to a stable limit cycle, to a strange attractor, to a false attractor
(due to roundoff errors), or diverge. In other words, mindless iteration
is essentially uncontrollable, and we will need to resort to more thought-
ful explorations. As we shall explain in due course below, strategies3.6, page 54

for systematic exploration rely on stable/unstable manifolds, periodic
points, saddle-straddle methods and so on.

Example 3.7 Parabola:
One iteration of the Hénon map stretches and folds a region of the (x, y)
plane centered around the origin. The parameter a controls the amount of
stretching, while the parameter b controls the thickness of the folded image
through the ‘1-step memory’ term bxn−1 in (3.16). In Fig. 3.5 the parameter
b is rather large, b = 0.3, so the attractor is rather thick, with the transverse
fractal structure clearly visible. For vanishingly small b the Hénon map
reduces to the 1-dimensional quadratic map

xn+1 = 1 − ax2
n . (3.18)

By setting b = 0 we lose determinism, as on reals the inverse of map (3.18) has3.7, page 54

two preimages {x+
n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect:

the Hénon map is injective or one-to-one, but the quadratic map is surjective

or many-to-one. Still, this 1-dimensional approximation is very instructive.

As we shall see in Section ??, an understanding of 1-dimensional dy-
namics is indeed the essential prerequisite to unravelling the qualitative
dynamics of many higher-dimensional dynamical systems. For this rea-
son many expositions of the theory of dynamical systems commence with
a study of 1-dimensional maps. We prefer to stick to flows, as that is
where the physics is.Appendix ??

Summary

In recurrent dynamics a trajectory exits a region in state space and then
reenters it infinitely often, with a finite mean return time. If the orbit
is periodic, it returns after a full period. So, on average, nothing much
really happens along the trajectory–what is important is behavior of
neighboring trajectories transverse to the flow. This observation moti-
vates a replacement of the continuous time flow by iterative mapping,
the Poincaré return map.

The visualization of strange attractors is greatly facilitated by a felic-
itous choice of Poincaré sections, and the reduction of flows to Poincaré
return maps. This observation motivates in turn the study of discrete-
time dynamical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is
the reduction of a billiard flow to a boundary-to-boundary return map,
described in Chapter 6 below. As we shall show in Chapter 7, further
simplification of a Poincaré return map, or any nonlinear map, can be
attained through rectifying these maps locally by means of smooth con-
jugacies.
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Further reading

Determining a Poincaré section. The idea of chang-
ing the integration variable from time to one of the coor-
dinates, although simple, avoids the alternative of having
to interpolate the numerical solution to determine the in-
tersection. The trick described in Section 3.2 is due to
Hénon [5–7].

Hénon, Lozi maps. The Hénon map is of no
particular physical import in and of itself–its significance
lies in the fact that it is a minimal normal form for mod-
eling flows near a saddle-node bifurcation, and that it is
a prototype of the stretching and folding dynamics that
leads to deterministic chaos. It is generic in the sense
that it can exhibit arbitrarily complicated symbolic dy-
namics and mixtures of hyperbolic and non–hyperbolic
behaviors. Its construction was motivated by the best
known early example of ‘deterministic chaos’, the Lorenz
equation [1].

1

Y. Pomeau’s studies of the Lorenz attractor on an ana-
log computer, and his insights into its stretching and fold-
ing dynamics motivated Hénon [2] to introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can
be found in reprint collections Refs. [3, 4]. They are a
pleasure to read, and are still the best introduction to
the physics motivating such models. A detailed descrip-
tion of the dynamics of the Hénon map is given by Mira
and coworkers [8], as well as very many other authors.

The Lozi map [10] is particularly convenient in investi-
gating the symbolic dynamics of 2-d mappings. Both the
Lorenz and Lozi systems are uniformly smooth systems
with singularities. The continuity of measure for the Lozi
map was proven by M. Misiurewicz [11], and the existence
of the SRB measure was established by L.-S. Young.

Exercises

(3.1) Poincaré sections of the Rössler flow. (con-
tinuation of Exercise 2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of
the Rössler flow. As the Rössler flow state space is
3-dimensional, the flow maps onto a 2-dimensional
Poincaré section. Do you see that in your numer-
ical results? How good an approximation would a
replacement of the return map for this section by
a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued
as Exercise 4.4)

(Rytis Paškauskas)

(3.2) A return Poincaré map for the Rössler flow.
(continuation of Exercise 3.1) That Poincaré re-
turn maps of Fig. 3.1 appear multimodal and
non-invertible is an artifact of projections of a 2-
dimensional return map (Rn, zn) → (Rn+1, zn+1)
onto a 1-dimensional subspace Rn → Rn+1.

Construct a genuine sn+1 = f(sn) return map by
parametrazing points on a Poincaré section of the
attractor Fig. 3.1 by a Euclidean length s computed

curvilinearly along the attractor section.

This is best done (using methods to be developed
in what follows) by a continuation of the unstable
manifold of the 1-cycle embedded in the strange
attractor, Fig. ?? (b).

(Predrag Cvitanović)

(3.3) Arbitrary Poincaré sections. We will gener-
alize the construction of Poincaré sections so that
they can have any shape, as specified by the equa-
tion U(x) = 0.

(a) Start by modifying your integrator so that
you can change the coordinates once you get
near the Poincaré section. You can do this
easily by writing the equations as

dxk

ds
= κfk , (3.19)

with dt/ds = κ, and choosing κ to be 1 or
1/f1. This allows one to switch between t
and x1 as the integration ’time.’
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(b) Introduce an extra dimension xn+1 into your
system and set

xn+1 = U(x) . (3.20)

How can this be used to find a Poincaré sec-
tion?

(3.4) Classical collinear helium dynamics. (con-
tinuation of Exercise 2.10)

Make a Poincaré surface of section by plotting
(r1, p1) whenever r2 = 0: Note that for r2 = 0,
p2 is already determined by (5.6). Compare your
results with Fig. ?? (b).

(Gregor Tanner, Per Rosenqvist)

(3.5) Hénon map fixed points. Show that the two
fixed points (x0, x0), (x1, x1) of the Hénon map
(3.15) are given by

x0 =
−(1 − b) −√

(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (3.21)

(3.6) How strange is the Hénon attractor?

(a) Iterate numerically some 100,000 times or so
the Hénon map[

x′

y′

]
=

[
1 − ax2 + y
bx

]

for a = 1.4, b = 0.3 . Would you describe the
result as a ’strange attractor’? Why?

(b) Now check how robust the Hénon attractor
is by iterating a slightly different Hénon map,
with a = 1.39945219, b = 0.3. Keep at it until
the ’strange’ attractor vanishes like the smile
of the Chesire cat. What replaces it? Would
you describe the result as a ’strange attrac-
tor’? Do you still have confidence in your
own claim for the part (a) of this exercise?

(3.7) Fixed points of maps. A continuous function
F is a contraction of the unit interval if it maps the
interval inside itself.

(a) Use the continuity of F to show that a one-
dimensional contraction F of the interval [0, 1]
has at least one fixed point.

(b) In a uniform (hyperbolic) contraction the
slope of F is always smaller than one, |F ′| <
1. Is the composition of uniform contractions
a contraction? Is it uniform?
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