
Transporting densities 14
Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.
W. Shakespeare: The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 7 and 8 we learned how to track an individual trajec-
tory, and saw that such a trajectory can be very complicated. In Chap-
ter 4 we studied a small neighborhood of a trajectory and learned that
such neighborhood can grow exponentially with time, making the con-
cept of tracking an individual trajectory for long times a purely mathe-
matical idealization.

While the trajectory of an individual representative point may be
highly convoluted, as we shall see, the density of these points might
evolve in a manner that is relatively smooth. The evolution of the
density of representative points is for this reason (and other that will
emerge in due course) of great interest. So are the behaviors of other
properties carried by the evolving swarm of representative points.

We shall now show that the global evolution of the density of repre-
sentative points is conveniently formulated in terms of evolution oper-
ators.

14.1 Measures

Do I then measure, O my God, and know not what I measure?
St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic sys-
tem is that of measure, which we denote by dμ(x) = ρ(x)dx. An intu-
itive way to define and construct a physically meaningful measure is
by a process of coarse-graining. Consider a sequence 1, 2, ..., n, ... of
increasingly refined partitions of state space, Fig. 14.1, into regionsMi

defined by the characteristic function

χi(x) =
{

1 if x ∈Mi ,
0 otherwise .

(14.1)

A coarse-grained measure is obtained by assigning the “mass”, or the
fraction of trajectories contained in the ith region Mi ⊂ M at the nth



202 CHAPTER 14. TRANSPORTING DENSITIES

level of partitioning of the state space:

Δμi =
∫
M

dμ(x)χi(x) =
∫
Mi

dμ(x) =
∫
Mi

dx ρ(x) . (14.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points
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Fig. 14.1 (a) First level of partitioning: A
coarse partition of M into regions M0,
M1, and M2. (b) n = 2 level of parti-
tioning: A refinement of the above par-
tition, with each region Mi subdivided
into Mi0, Mi1, and Mi2.

in state space at time t. This density can be (and in chaotic dynamics,
often is) an arbitrarily ugly function, and it may display remarkable
singularities; for instance, there may exist directions along which the
measure is singular with respect to the Lebesgue measure. We shall
assume that the measure is normalized

(n)∑
i

Δμi = 1 , (14.3)

where the sum is over subregions i at the nth level of partitioning. The
infinitesimal measure ρ(x) dx can be thought of as an infinitely refined
partition limit of Δμi = |Mi|ρ(xi) , xi ∈Mi, with normalization∫

M
dx ρ(x) = 1 . (14.4)

Here |Mi| is the volume of regionMi, and all |Mi| → 0 as n→∞.
So far, any arbitrary sequence of partitions will do. What are intel-

ligent ways of partitioning state space? We already know the answer
from Chapter 10, but let us anyway develope some intuition about how
the dynamics transports densities.

Chapter 10

14.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with
time. Consider a swarm of representative points making up the mea-
sure contained in a regionMi at time t = 0. As the flow evolves, this
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Fig. 14.2 The evolution rule f tcan be
used to map a region Mi of the state
space into the region f t(Mi).

region is carried into f t(Mi), as in Fig. 14.2. No trajectory is created or
destroyed, so the conservation of representative points requires that∫

ft(Mi)

dx ρ(x, t) =
∫
Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand
side to the initial points x0 = f−t(x),∫

Mi

dx0 ρ(f t(x0), t)
∣∣det J t(x0)

∣∣ =
∫
Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.35)

ρ(x, t) =
ρ(x0, 0)
|det J t(x0)| , x = f t(x0) , (14.5)

which makes sense: the density varies inversely with the infinitesimal
volume occupied by the trajectories of the flow.

0.4

0.6

0.8

1

Λ0

Λ1
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14.2. PERRON-FROBENIUS OPERATOR 203

The relation (14.5) is linear in ρ, so the manner in which a flow trans-
ports densities may be recast into the language of operators, by writing

ρ(x, t) =
(Lt ◦ ρ

)
(x) =

∫
M

dx0 δ
(
x− f t(x0)

)
ρ(x0, 0) . (14.6)

Let us check this formula. As long as the zero is not smack on the
border of ∂M, integrating Dirac delta functions is easy:

∫
M dx δ(x) = 1

if 0 ∈ M, zero otherwise. The integral over a one-dimensional Dirac
delta function picks up the Jacobian of its argument evaluated at all of
its zeros: ∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1
|h′(x)| , (14.7)

and in d dimensions the denominator is replaced by
14.1, page 214∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣ . (14.8)

Now you can check that (14.6) is just a rewrite of (14.5):
14.2, page 214(Lt ◦ ρ

)
(x) =

∑
x0=f−t(x)

ρ(x0)
|f t′(x0)| (1-dimensional)

=
∑

x0=f−t(x)

ρ(x0)
|det J t(x0)| (d-dimensional) .(14.9)

For a deterministic, invertible flow x has only one preimage x0; allow-
ing for multiple preimages also takes account of noninvertible map-
pings such as the ‘stretch & fold’ maps of the interval, to be discussed
briefly in the next example, and in more detail in Section 10.2.1.

We shall refer to the kernel of (14.6) as the Perron-Frobenius operator:

14.3, page 214

Example ??
Lt(x, y) = δ

(
x− f t(y)

)
. (14.10)

If you do not like the word “kernel” you might prefer to think ofLt(x, y)
as a matrix with indices x, y, and index summation in matrix multipli-
cation replaced by an integral over y, (Lt ◦ ρ) (x) =

∫
dy Lt(x, y)ρ(y) .

The Perron-Frobenius operator assembles the density ρ(x, t) at time t
Remark 17.3

by going back in time to the density ρ(x0, 0) at time t = 0.

in depth:

Appendix ??, p. ??

Example 14.1 Perron-Frobenius operator for a piecewise-linear map:
Assume the expanding 1-dmap f(x) of Fig. 14.3, a piecewise-linear 2–branch
map with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

14.7, page 215

f(x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] .

(14.11)

Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. We
shall refer to any unimodal map whose critical point maps onto the “left”

ChaosBook.org version11.9.2, Aug 21 2007 measure - 28oct2007



204 CHAPTER 14. TRANSPORTING DENSITIES

unstable fixed point x0 as the “Ulam” map. Assume a piecewise constant
density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (14.12)

As can be easily checked using (14.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] Markov matrix L with matrix
elements14.1, page 214

14.5, page 215

(
ρ0

ρ1

)
→ Lρ =

(
1

|Λ0|
1

|Λ1|
1

|Λ0|
1

|Λ1|

)(
ρ0

ρ1

)
, (14.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example
the density is constant after one iteration, so L has only a unit eigenvalue
es0 = 1/|Λ0| + 1/|Λ1| = 1, with constant density eigenvector ρ0 = ρ1. The
quantities 1/|Λ0|, 1/|Λ1| are, respectively, the fractions of state space taken
up by the |M0|, |M1| intervals. This simple explicit matrix representation
of the Perron-Frobenius operator is a consequence of the piecewise linear-
ity of f , and the restriction of the densities ρ to the space of piecewise con-
stant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in gen-
eral, there will exist no such finite-dimensional representation for the Perron-
Frobenius operator. (Continued in Example 15.1.)

14.3 Why not just leave it to a computer?

(R. Artuso and P. Cvitanović)

To a student with a practical bent the above Example 14.1 suggests a
strategy for constructing evolution operators for smooth maps, as lim-
its of partitions of state space into regionsMi, with a piecewise-linear
approximations fi to the dynamics in each region, but that would be too
naive; much of the physically interesting spectrum would be missed.
As we shall see, the choice of function space for ρ is crucial, and theChapter ??

physically motivated choice is a space of smooth functions, rather than
the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is
nothing but an elegant way of thinking of the evolution operator, L, as
a matrix (this point of view will be further elaborated in Chapter ??).
There are many textbook methods of approximating an operator L by
sequences of finite matrix approximations L, but in what follows the
great achievement will be that we shall avoid constructing any matrix
approximation to L altogether. Why a new method? Why not just run it
on a computer, as many do with such relish in diagonalizing quantum
Hamiltonians?

The simplest possible way of introducing a state space discretization,
Fig. 14.4, is to partition the state spaceM with a non-overlapping col-
lection of sets Mi, i = 1, . . . , N , and to consider piece-wise constant
densities (14.2), constant on eachMi:

ρ(x) =
N∑

i=1

ρi
χi(x)
|Mi|

measure - 28oct2007 ChaosBook.org version11.9.2, Aug 21 2007



14.3. WHY NOT JUST LEAVE IT TO A COMPUTER? 205

where χi(x) is the characteristic function (14.1) of the setMi. The den-
sity ρi at a given instant is related to the densities at the previous step
in time by the action of the Perron-Frobenius operator, as in (14.6):

ρ′j =
∫
M

dy χj(y)ρ′(y) =
∫
M

dx dy χj(y) δ(y − f(x)) ρ(x)

=
N∑

i=1

ρi
|Mi ∩ f−1(Mj)|

|Mi| .

In this way

Lij =
|Mi ∩ f−1(Mj)|

|Mi| , ρ′ = ρL (14.14)

is a matrix approximation to the Perron-Frobenius operator, and its
leading left eigenvector is a piecewise constant approximation to the
invariant measure. It is an old idea of Ulam that such an approxi-

Fig. 14.4 State space discretization ap-
proach to computing averages.

mation for the Perron-Frobenius operator is a meaningful one.

Remark 14.6

The problem with such state space discretization approaches is that
they are blind, the grid knows not what parts of the state space are more
or less important. This observation motivated the development of the
invariant partitions of chaotic systems undertaken in Chapter 10, we
exploited the intrinsic topology of a flow to give us both an invariant
partition of the state space and a measure of the partition volumes, in
the spirit of Fig. 1.11.

Furthermore, a piecewise constant ρ belongs to an unphysical func-
tion space, and with such approximations one is plagued by numerical
artifacts such as spurious eigenvalues. In Chapter ?? we shall employ
a more refined approach to extracting spectra, by expanding the initial
and final densities ρ, ρ′ in some basis ϕ0, ϕ1, ϕ2, · · · (orthogonal poly-
nomials, let us say), and replacing L(y, x) by its ϕα basis representation
Lαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art of finding a “good”
basis for which finite truncations of Lαβ give accurate estimates of the
eigenvalues of L.

Chapter ??

Regardless of how sophisticated the choice of basis might be, the
basic problem cannot be avoided - as illustrated by the natural mea-
sure for the Hénon map (3.15) sketched in Fig. 14.5, eigenfunctions of L
are complicated, singular functions concentrated on fractal sets, and in
general cannot be represented by a nice basis set of smooth functions.
We shall resort to matrix representations ofL and the ϕα basis approach
only insofar this helps us prove that the spectrum that we compute is
indeed the correct one, and that finite periodic orbit truncations do con-
verge.

in depth:

Chapter 1, p. 1

ChaosBook.org version11.9.2, Aug 21 2007 measure - 28oct2007



206 CHAPTER 14. TRANSPORTING DENSITIES

14.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (14.15)

Conversely, if such a density exists, the transformation f t(x) is said to
be measure-preserving. As we are given deterministic dynamics and our
goal is the computation of asymptotic averages of observables, our task
is to identify interesting invariant measures for a given f t(x). Invariant
measures remain unaffected by dynamics, so they are fixed points (in
the infinite-dimensional function space of ρ densities) of the Perron-
Frobenius operator (14.10), with the unit eigenvalue:14.3, page 214

Ltρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (14.16)

In general, depending on the choice of f t(x) and the function space for
ρ(x), there may be no, one, or many solutions of the eigenfunction con-
dition (14.16). For instance, a singular measure dμ(x) = δ(x − xq)dx
concentrated on an equilibrium point xq = f t(xq), or any linear combi-
nation of such measures, each concentrated on a different equilibrium
point, is stationary. There are thus infinitely many stationary measures
that can be constructed. Almost all of them are unnatural in the sense
that the slightest perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densi-
ties which are singular, so we shall focus on measures which are limits
of transformations experienced by an initial smooth distribution ρ(x)
under the action of f ,

ρ0(x) = lim
t→∞

∫
M

dy δ(x− f t(y))ρ(y, 0) ,

∫
M

dy ρ(y, 0) = 1 . (14.17)

Intuitively, the “natural” measure should be the measure that is the
least sensitive to the (in practice unavoidable) external noise, no matter
how weak.

14.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us use-
ful insight into the foundation of statistical mechanics?
Yang: I don’t think so.
Kerson Huang, C.N. Yang interview

In computer experiments, as the Hénon example of Fig. 14.5, the long
time evolution of many “typical” initial conditions leads to the same
asymptotic distribution. Hence the natural (or equilibrium measure,
SRB measure, Sinai-Bowen-Ruelle measure, invariant density, natural
density, or even “natural invariant”) is defined as the limit14.8, page 215

14.9, page 215
measure - 28oct2007 ChaosBook.org version11.9.2, Aug 21 2007



14.4. INVARIANT MEASURES 207

ρx0
(y) =

⎧⎨
⎩

limt→∞ 1
t

∫ t

0
dτ δ(y − f τ (x0)) flows

limn→∞ 1
n

∑n−1
k=0 δ

(
y − fk(x0)

)
maps ,

(14.18)
where x0 is a generic initial point. Generated by the action of f , the
natural measure satisfies the stationarity condition (14.16) and is thus
invariant by construction.

Staring at an average over infinitely many Dirac deltas is not a prospect
we cherish. From a computational point of view, the natural measure is
the visitation frequency defined by coarse-graining, integrating (14.18)
over theMi region

Δμi = lim
t→∞

ti
t

, (14.19)

where ti is the accumulated time that a trajectory of total duration t
spends in the Mi region, with the initial point x0 picked from some
smooth density ρ(x).

Let a = a(x) be any observable. In the mathematical literature a(x)
is a function belonging to some function space, for instance the space
of integrable functions L1, that associates to each point in state space
a number or a set of numbers. In physical applications the observable
a(x) is necessarily a smooth function. The observable reports on some
property of the dynamical system. Several examples will be given in
Section 15.1.

The space average of the observable a with respect to a measure ρ is
given by the d-dimensional integral over the state spaceM:

〈a〉ρ =
1
|ρM|

∫
M

dx ρ(x)a(x)

|ρM| =
∫
M

dx ρ(x) = mass inM . (14.20)

For now we assume that the state spaceM has a finite dimension and
a finite volume. By definition, 〈a〉ρ is a function(al) of ρ. For ρ = ρ0 nat-
ural measure we shall drop the subscript in the definition of the space
average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (14.18) into (14.20), we see that the
natural measure corresponds to a time average of the observable a along
a trajectory of the initial point x0,

ax0 = lim
t→∞

1
t

∫ t

0

dτ a(f τ (x0)) . (14.21)

Analysis of the above asymptotic time limit is the central problem
of ergodic theory. The Birkhoff ergodic theorem asserts that if a natural
measure ρ exists, the limit a(x0) for the time average (14.21) exists for
all initial x0. As we shall not rely on this result in what follows we
forgo a proof here. Furthermore, if the dynamical system is ergodic, the
time average tends to the space average

Remark 14.6

Appendix 21lim
t→∞

1
t

∫ t

0

dτ a(f τ (x0)) = 〈a〉 (14.22)

ChaosBook.org version11.9.2, Aug 21 2007 measure - 28oct2007



208 CHAPTER 14. TRANSPORTING DENSITIES

for “almost all” initial x0. By “almost all” we mean that the time av-
erage is independent of the initial point apart from a set of ρ-measure
zero.

For future reference, we note a further property that is stronger than
ergodicity: if the space average of a product of any two variables decor-
relates with time,

lim
t→∞

〈
a(x)b(f t(x))

〉
= 〈a〉 〈b〉 , (14.23)

the dynamical system is said to be mixing.Section ??←−

-0.4

0

0.4
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0

1.5
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-0.4

0

0.4

y

μ

Fig. 14.5 Natural measure (14.19) for the
Hénon map (3.15) strange attractor at pa-
rameter values (a, b) = (1.4, 0.3). See
Fig. 3.5 for a sketch of the attractor with-
out the natural measure binning. (Cour-
tesy of J.-P. Eckmann)

Example 14.2 The Hénon attractor natural measure:
A numerical calculation of the natural measure (14.19) for the Hénon attrac-
tor (3.15) is given by the histogram in Fig. 14.5. The state space is partitioned
into many equal-size areas Mi, and the coarse grained measure (14.19) is
computed by a long-time iteration of the Hénon map, and represented by
the height of the column over area Mi. What we see is a typical invariant
measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance a Dirac δ con-
centrated on a fixed point or a cycle), its existence is most likely of no
physical import; no smooth initial density will converge to this mea-
sure if its neighborhood is repelling. In practice the average (14.18)
is problematic and often hard to control, as generic dynamical systems
are neither uniformly hyperbolic nor structurally stable: it is not known
whether even the simplest model of a strange attractor, the Hénon at-
tractor of Fig. 14.5, is “strange,” or merely a transient to a very long
stable cycle.15.1, page 230

14.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we
cannot do better than to measure ρ averaged over some regionMi; the
coarse-graining is not an approximation but a physical necessity. One is
free to think of a measure as a probability density, as long as one keeps
in mind the distinction between deterministic and stochastic flows.
In deterministic evolution the evolution kernels are not probabilistic;
the density of trajectories is transported deterministically. What this dis-Chapter 17

tinction means will became apparent later: for deterministic flows our
trace and determinant formulas will be exact, while for quantum and
stochastic flows they will only be the leading saddlepoint (stationary
phase, steepest descent) approximations.Chapter ??

Clearly, while deceptively easy to define, measures spell trouble. The
good news is that if you hang on, you will never need to compute them,
at least not in this book. How so? The evolution operators to which
we next turn, and the trace and determinant formulas to which they
will lead us, will assign the correct weights to desired averages with-
out recourse to any explicit computation of the coarse-grained measure
Δρi.
measure - 28oct2007 ChaosBook.org version11.9.2, Aug 21 2007



14.5. DENSITY EVOLUTION FOR INFINITESIMAL TIMES 209

14.5 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an
infinitesimal step δτ , by expanding the action of Lδτ to linear order in
δτ :

Lδτρ(y) =
∫
M

dx δ
(
y − f δτ (x)

)
ρ(x)

=
∫
M

dx δ(y − x− δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣det
(
1 + δτ ∂v(y)

∂x

)∣∣∣ =
ρ(y)− δτvi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ ) = ρ(x, 0)− δτ . (14.24)

Here we have used the infinitesimal form of the flow (2.6), the Dirac
4.1, page 67delta Jacobian (14.9), and the ln det = tr ln relation. By the Einstein

summation convention, repeated indices imply summation, vi(y)∂i =∑d
i=1 vi(y)∂i. Moving ρ(y, 0) to the left hand side and dividing by δτ ,

we discover that the rate of the deformation of ρ under the infinitesimal
action of the Perron-Frobenius operator is nothing but the continuity
equation for the density:

∂tρ + ∂ · (ρv) = 0 . (14.25)

The family of Perron-Frobenius operators operators {Lt}t∈R+
forms a

semigroup parametrized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

From (14.24), time evolution by an infinitesimal step δτ forward in time
is generated by

Aρ(x) = + lim
δτ→0+

1
δτ

(Lδτ − I
)
ρ(x) = −∂i(vi(x)ρ(x)) . (14.26)

We shall refer to

A = −∂ · v +
d∑
i

vi(x)∂i (14.27)

as the time evolution generator. If the flow is finite-dimensional and
invertible, A is a generator of a full-fledged group. The left hand side
of (14.26) is the definition of time derivative, so the evolution equation
for ρ(x) is (

∂

∂t
−A

)
ρ(x) = 0 . (14.28)

Appendix ??
The finite time Perron-Frobenius operator (14.10) can be formally ex-

pressed by exponentiating the time evolution generator A as

Lt = etA . (14.29)
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210 CHAPTER 14. TRANSPORTING DENSITIES

The generatorA is reminiscent of the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothing but a trans-
lation by (time× velocity):14.10, page 215

e−tv ∂
∂x a(x) = a(x− tv) . (14.30)

As we will not need to implement a computational formula for gen-
eral etA in what follows, we relegate making sense of such operators to
Appendix ??.Appendix ??

14.5.1 Resolvent of L
Here we limit ourselves to a brief remark about the notion of the “spec-
trum” of a linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it
is reasonable to suppose that there exist constants M > 0, β ≥ 0 such
that ||Lt|| ≤ Metβ for all t ≥ 0. What does that mean? The oper-
ator norm is defined in the same spirit in which one defines matrix
norms (see Appendix ??): We are assuming that no value of Ltρ(x)
grows faster than exponentially for any choice of function ρ(x), so that
the fastest possible growth can be bounded by etβ , a reasonable ex-
pectation in the light of the simplest example studied so far, the ex-
act escape rate (15.20). If that is so, multiplying Lt by e−tβ we con-Appendix ??

struct a new operator e−tβLt = et(A−β) which decays exponentially for
large t, ||et(A−β)|| ≤ M . We say that e−tβLt is an element of a bounded
semigroup with generator A − βI . Given this bound, it follows by the
Laplace transform

∫ ∞

0

dt e−stLt =
1

s−A , �s > β , (14.31)

that the resolvent operator (s −A)−1 is bounded (“resolvent” = able toSection ??←−
cause separation into constituents)

∣∣∣∣
∣∣∣∣ 1
s−A

∣∣∣∣
∣∣∣∣ ≤

∫ ∞

0

dt e−stMetβ =
M

s− β
.

If one is interested in the spectrum of L, as we will be, the resolvent
operator is a natural object to study; it has no time dependence, and it is
bounded. The main lesson of this brief aside is that for continuous time
flows, the Laplace transform is the tool that brings down the generator
in (14.29) into the resolvent form (14.31) and enables us to study its
spectrum.

in depth:

Appendix ??, p. ??
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14.6. LIOUVILLE OPERATOR 211

14.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow
defined by Hamilton’s equations of motion (7.1). A reader versed in
quantum mechanics will have observed by now that with replacement
A → − i

�
Ĥ , where Ĥ is the quantum Hamiltonian operator, (14.28)

looks rather like the time dependent Schrödinger equation, so this is
probably the right moment to figure out what all this means in the case
of Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-independent
quantity Q = Q(q, p) are given by

dQ

dt
=

∂Q

∂qi

dqi

dt
+

∂Q

∂pi

dpi

dt
=

∂H

∂pi

∂Q

∂qi
− ∂Q

∂pi

∂H

∂qi
. (14.32)

As equations with this structure arise frequently for symplectic flows,
it is convenient to introduce a notation for them, the Poisson bracket

Remark 14.6

{A, B} =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
. (14.33)

In terms of Poisson brackets the time evolution equation (14.32) takes
the compact form

dQ

dt
= {H, Q} . (14.34)

The full state space flow velocity is ẋ = v = (q̇, ṗ), where the dot
signifies time derivative.

The discussion of Section 14.5 applies to any deterministic flow. If
the density itself is a material invariant, combining

∂tI + v · ∂I = 0 .

and (14.25) we conclude that ∂ivi = 0 and det J t(x0) = 1. An example
of such incompressible flow is the Hamiltonian flow of Section 7.2. For
incompressible flows the continuity equation (14.25) becomes a state-
ment of conservation of the state space volume (see Section 7.2), or the
Liouville theorem

∂tρ + vi∂iρ = 0 . (14.35)

Hamilton’s equations (7.1) imply that the flow is incompressible, ∂ivi =
0, so for Hamiltonian flows the equation for ρ reduces to the continuity
equation for the phase space density:

Appendix ??

∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . , D . (14.36)

Consider the evolution of the phase space density ρ of an ensemble
of noninteracting particles; the particles are conserved, so

d

dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .
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Inserting Hamilton’s equations (7.1) we obtain the Liouville equation, a
special case of (14.28):

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = {H, ρ(q, p, t)} , (14.37)

where { , } is the Poisson bracket (14.33). The generator of the flow
(14.27) is in this case a generator of infinitesimal symplectic transfor-
mations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (14.38)

For example, for separable Hamiltonians of form H = p2/2m + V (q),
the equations of motion are

q̇i =
pi

m
, ṗi = −∂V (q)

∂qi
. (14.39)

and the action of the generator

A = −pi

m

∂

∂qi
+ ∂iV (q)

∂

∂pi
. (14.40)

can be interpreted as a translation (14.30) in configuration space, fol-14.11, page 215

lowed by acceleration by force ∂V (q) in the momentum space.Appendix ??
The time evolution generator (14.27) for the case of symplectic flows

is called the Liouville operator. You might have encountered it in statis-
tical mechanics, while discussing what ergodicity means for 1023 hard
balls. Here its action will be very tangible; we shall apply the Liouville
operator to systems as small as 1 or 2 hard balls and to our surprise
learn that this suffices to already get a bit of a grip on foundations of
the nonequilibrium statistical mechanics.

in depth:

Section ??, p. ??

Summary

In physically realistic settings the initial state of a system can be spec-
ified only to a finite precision. If the dynamics is chaotic, it is not pos-
sible to calculate accurately the long time trajectory of a given initial
point. Depending on the desired precision, and given a deterministic
law of evolution, the state of the system can then be tracked for a finite
time.

The study of long-time dynamics thus requires trading in the evolu-
tion of a single state space point for the evolution of a measure, or the
density of representative points in state space, acted upon by an evo-
lution operator. Essentially this means trading in nonlinear dynamical
equations on a finite dimensional space x = (x1, x2 · · ·xd) for a linear
equation on an infinite dimensional vector space of density functions
measure - 28oct2007 ChaosBook.org version11.9.2, Aug 21 2007



Further reading 213

ρ(x). The most physical of stationary measures is the natural measure,
a measure robust under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the
notion of an individual deterministic trajectory loses meaning, is much
shorter than the observation time, the “sharp” observables are those
dual to time, the eigenvalues of evolution operators. This is very much
the same situation as in quantum mechanics; as atomic time scales are
so short, what is measured is the energy, the quantum-mechanical ob-
servable dual to the time. For long times the dynamics is described in
terms of stationary measures, i.e., fixed points of the appropriate evo-
lution operators. Both in classical and quantum mechanics one has a
choice of implementing dynamical evolution on densities (“Schrödinger
picture”, Section 14.5) or on observables (“Heisenberg picture”, Sec-
tion 15.2 and Chapter 16).

In what follows we shall find the second formulation more conve-
nient, but the alternative is worth keeping in mind when posing and
solving invariant density problems. However, as classical evolution
operators are not unitary, their eigenstates can be quite singular and
difficult to work with. In what follows we shall learn how to avoid
dealing with these eigenstates altogether. As a matter of fact, what
follows will be a labor of radical deconstruction; after having argued
so strenuously here that only smooth measures are “natural”, we shall
merrily proceed to erect the whole edifice of our theory on periodic
orbits, i.e., objects that are δ-functions in state space. The trick is that
each comes with an interval, its neighborhood – cycle points only serve
to pin these intervals, just as the millimeter marks on a measuring rod
partition continuum into intervals.

Further reading

An overview of ergodic theory is outside the scope of this
book: the interested reader may find it useful to consult
Ref. [1]. The existence of time average (14.21) is the ba-
sic result of ergodic theory, known as the Birkhoff theo-
rem, see for example Refs. [1, 21], or the statement of the-
orem 7.3.1 in Ref. [8]. The natural measure (14.19) of Sec-
tion 14.4.1 is often referred to as the SRB or Sinai-Ruelle-
Bowen measure [25, 23, 27].

Time evolution as a Lie group: Time evolution of
Section 14.5 is an example of a 1-parameter Lie group.
Consult, for example, chapter 2. of Ref. [9] for a clear
and pedagogical introduction to Lie groups of transfor-
mations. For a discussion of the bounded semigroups of
page 210 see, for example, Marsden and Hughes [2].

Discretization of the Perron-Frobenius operator op-
erator It is an old idea of Ulam [11] that such an ap-
proximation for the Perron-Frobenius operator is a mean-
ingful one. The approximation of the Perron-Frobenius
operator (??) has been shown to reproduce the spectrum
for expanding maps, once finer and finer Markov parti-
tions are used [12, 16, 13]. The subtle point of choosing a
state space partitioning for a “generic case” is discussed in
Ref. [14, 15].

The sign convention of the Poisson bracket: The
Poisson bracket is antisymmetric in its arguments and
there is a freedom to define it with either sign conven-
tion. When such freedom exists, it is certain that both
conventions are in use and this is no exception. In some
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texts [8, 3] you will see the right hand side of (14.33) de-
fined as {B,A} so that (14.34) is dQ

dt
= {Q,H}. Other

equally reputable texts [?] employ the convention used
here. Landau and Lifshitz [4] denote a Poisson bracket
by [A,B], notation that we reserve here for the quantum-
mechanical commutator. As long as one is consistent,
there should be no problem.

“Anon it lives”? “Anon it lives” refers to a statue
of King Leontes’s wife, Hermione, who died in a fit of

grief after he unjustly accused her of infidelity. Twenty
years later, the servant Paulina shows Leontes this statue
of Hermione. When he repents, the statue comes to life.
Or perhaps Hermione actually lived and Paulina has kept
her hidden all these years. The text of the play seems de-
liberately ambiguous. It is probably a parable for the res-
urrection of Christ. (John F.
Gibson)

Exercises

(14.1) Integrating over Dirac delta functions. Let us
verify a few of the properties of the delta function
and check (14.9), as well as the formulas (14.7) and
(14.8) to be used later.

(a) If f : R
d → R

d, show that∫
Rd

dx δ (f(x)) =
∑

x∈f−1(0)

1

|det∂xf |
.

(b) The delta function can be approximated by a
sequence of Gaussians

∫
dx δ(x)f(x) = lim

σ→0

∫
dx

e−
x2
2σ

√
2πσ

f(x) .

Use this approximation to see whether the for-
mal expression ∫

R

dx δ(x2)

makes sense.

(14.2) Derivatives of Dirac delta functions. Consider
δ(k)(x) = ∂k

∂xk δ(x) .

Using integration by parts, determine the value of∫
R

dx δ′(y) , where y = f(x) − x (14.41)∫
dx δ(2) (y) =

∑
{x:y(x)=0}

1

|y′|

{
3
(y′′)2

(y′)4
− y′′′

(y′)3

}
(14.42)

∫
dx b(x)δ(2)(y) =

∑
{x:y(x)=0}

1

|y′|

{
b′′

(y′)2
− b′y′′

(y′)3

+b

(
3
(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(14.43)

These formulas are useful for computing effects of
weak noise on deterministic dynamics [5].

(14.3) Lt generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,∫

M

dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) , t1, t2 ≥ 0 .

(14.44)
As the flows in which we tend to be interested are
invertible, the L’s that we will use often do form a
group, with t1, t2 ∈ R.

(14.4) Escape rate of the tent map.

(a) Calculate by numerical experimentation the
log of the fraction of trajectories remaining
trapped in the interval [0, 1] for the tent map

f(x) = a(1 − 2|x− 0.5|)

for several values of a.

(b) Determine analytically the a dependence of
the escape rate γ(a).

(c) Compare your results for (a) and (b).

(14.5) Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (15.19).
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(b) The maximum value of the first map is 1.
Compute an invariant measure for this map.

(c) Compute the leading eigenvalue of L for this
map.

(d) For this map there is an infinite number of in-
variant measures, but only one of them will be
found when one carries out a numerical simu-
lation. Determine that measure, and explain
why your choice is the natural measure for
this map.

(e) In the second map the maximum occurs at
α = (3−

√
5)/2 and the slopes are±(

√
5+1)/2.

Find the natural measure for this map. Show
that it is piecewise linear and that the ratio of
its two values is (

√
5 + 1)/2.

(medium difficulty)

(14.6) Escape rate for a flow conserving map. Adjust
Λ0, Λ1 in (15.17) so that the gap between the inter-
vals M0, M1 vanishes. Show that the escape rate
equals zero in this situation.

(14.7) Eigenvalues of the Perron-Frobenius operator for
the skew Ulam tent map. Show that for the skew
Ulam tent map

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f(x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)

f1(x) = Λ0
Λ0−1

(1 − x) , x ∈ M1 = (1/Λ0, 1] .
(14.45)

the eigenvalues are available analytically, compute
the first few.

(14.8) “Kissing disks”∗ (continuation of exercises 8.1
and 8.2). Close off the escape by setting R = 2, and
look in real time at the density of the Poincaré sec-
tion iterates for a trajectory with a randomly chosen
initial condition. Does it look uniform? Should it
be uniform? (Hint - phase space volumes are pre-
served for Hamiltonian flows by the Liouville theo-
rem). Do you notice the trajectories that loiter near
special regions of phase space for long times? These
exemplify “intermittency”, a bit of unpleasantness
to which we shall return in Chapter ??.

(14.9) Invariant measure for the Gauss map. Consider
the Gauss map (we shall need this map in Chap-
ter ??):

f(x) =

{
1
x
−
[

1
x

]
x �= 0

0 x = 0

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2

1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

(14.10) A as a generator of translations. Verify that for a
constant velocity field the evolution generator A in
(14.30) is the generator of translations,

etv ∂
∂x a(x) = a(x+ tv) .

(14.11) Incompressible flows. Show that (14.9) implies
that ρ0(x) = 1 is an eigenfunction of a volume-
preserving flow with eigenvalue s0 = 0. In par-
ticular, this implies that the natural measure of hy-
perbolic and mixing Hamiltonian flows is uniform.
Compare this results with the numerical experi-
ment of Exercise 14.8.
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[7] P. Cvitanović, C.P. Dettmann, G. Palla, N. Søndergård and G. Vat-
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