Chapter 13. Counting

Solution 13.1: A transition matrix for 3-disk pinball. a) As the disk is convex, the transition to itself is forbidden. Therefore, the Markov diagram is

with the corresponding transition matrix

$$
\mathbb{T}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Note that $\mathbb{T}^{2}=\mathbb{T}+2$. Suppose that $\mathbb{T}^{n}=a_{n} \mathbb{T}+b_{n}$, then

$$
\mathbb{T}^{n+1}=a_{n} \mathbb{T}^{2}+b_{n} \mathbb{T}=\left(a_{n}+b_{n}\right) \mathbb{T}+2 a_{n}
$$

So $a_{n+1}=a_{n}+b_{n}, b_{n+1}=2 a_{n}$ with $a_{1}=1, b_{1}=0$.
b) From a) we have $a_{n+1}=a_{n}+2 a_{n-1}$. Suppose that $a_{n} \propto \lambda^{n}$. Then $\lambda^{2}=\lambda+2$. Solving this equation and using the initial condition for $n=1$, we obtain the general formula

$$
\begin{aligned}
a_{n} & =\frac{1}{3}\left(2^{n}-(-1)^{n}\right), \\
b_{n} & =\frac{2}{3}\left(2^{n-1}+(-1)^{n}\right) .
\end{aligned}
$$

c) \mathbb{T} has eigenvalue 2 and -1 (degeneracy 2). So the topological entropy is $\ln 2$, the same as in the case of the binary symbolic dynamics.
(Yueheng Lan)
Solution 13.2: Sum of $A_{i j}$ is like a trace. Suppose that $A \phi_{k}=\lambda_{k} \phi_{k}$, where λ_{k}, ϕ_{k} are eigenvalues and eigenvectors, respectively. Expressing the vector $v=(1,1, \cdots, 1)^{t}$ in terms of the eigenvectors ϕ_{k}, i.e., $v=\Sigma_{k} d_{k} \phi_{k}$, we have

$$
\begin{aligned}
\Gamma_{n} & =\Sigma_{i j}\left[A^{n}\right]_{i j}=v^{t} A^{n} v=\Sigma_{k} v^{t} A^{n} d_{k} \phi_{k}=\Sigma_{k} d_{k} \lambda_{k}^{n}\left(v^{t} \phi_{k}\right) \\
& =\Sigma_{k} c_{k} \lambda_{k}^{n},
\end{aligned}
$$

where $c_{k}=\left(v^{t} \phi_{k}\right) d_{k}$ are constants.
a) As $\operatorname{tr} A^{n}=\Sigma_{k} \lambda_{k}^{n}$, it is easy to see that both $\operatorname{tr} A^{n}$ and Γ_{n} are dominated by the largest eigenvalue λ_{0}. That is

$$
\frac{\ln \left|\operatorname{tr} A^{n}\right|}{\ln \left|\Gamma_{n}\right|}=\frac{n \ln \left|\lambda_{0}\right|+\ln \left|\Sigma_{k}\left(\frac{\lambda_{k}}{\lambda_{0}}\right)^{n}\right|}{n \ln \left|\lambda_{0}\right|+\ln \left|\Sigma_{k} d_{k}\left(\frac{\lambda_{k}}{\lambda_{0}}\right)^{n}\right|} \rightarrow 1 \text { as } n \rightarrow \infty .
$$

b) The nonleading eigenvalues do not need to be distinct, as the ratio in a) is controlled by the largest eigenvalues only.
(Yueheng Lan)
Solution 13.4: Transition matrix and cycle counting. a) According to the definition of $\mathbb{T}_{i j}$, the transition matrix is

$$
\mathbb{T}=\left(\begin{array}{ll}
a & c \\
b & 0
\end{array}\right)
$$

b) All walks of length three 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 (four symbols!) with weights $a a a, a a c, a c b, c b a, c b c, b a a, b a c, b c b$. Let's calculate \mathbb{T}^{3},

$$
\mathbb{T}^{3}=\left(\begin{array}{ll}
a^{3}+2 a b c & a^{2} c+b c^{2} \\
a^{2} b+b^{2} c & a b c
\end{array}\right)
$$

There are altogether 8 terms, corresponding exactly to the terms in all the walks.
c) Let's look at the following equality

$$
\mathbb{T}_{i j}^{n}=\Sigma_{k_{1}, k_{2}, \cdots, k_{n-1}} \mathbb{T}_{i k_{1}} \mathbb{T}_{k_{1} k_{2}} \cdots \mathbb{T}_{k_{n-1} j}
$$

Every term in the sum is a possible path from i to j, though the weight could be zero. The summation is over all possible intermediate points ($n-1$ of them). So, $\mathbb{T}_{i j}^{n}$ gives the total weight (probability or number) of all the walks from i to j in n steps.
d) We take $a=b=c=1$ to just count the number of possible walks in n steps. This is the crudest description of the dynamics. Taking a, b, c as transition probabilities would give a more detailed description. The eigenvlues of \mathbb{T} is $(1 \pm \sqrt{5}) / 2$, so we get $N(n) \propto\left(\frac{1+\sqrt{5}}{2}\right)^{n}$.
e) The topological entropy is then $\ln \frac{1+\sqrt{5}}{2}$.
(Yueheng Lan)
Solution 13.6: "Golden mean" pruned map. It is easy to write the transition matrix \mathbb{T}

$$
\mathbb{T}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

The eigenvalues are $(1 \pm \sqrt{5}) / 2$. The number of periodic orbits of length n is the trace

$$
\mathbb{T}^{n}=\frac{(1+\sqrt{5})^{n}+(1-\sqrt{5})^{n}}{2^{n}}
$$

Solution 13.5: 3-disk prime cycle counting. The formula for arbitrary length cycles is derived in sect. 13.4.

Solution 13.44: Alphabet $\{\mathbf{0 , 1}\}$, prune _1000_, _00100_, _01100_.
step 1. _1000_ prunes all cycles with a _000_ subsequence with the exception of the fixed point $\overline{0}$; hence we factor out $\left(1-t_{0}\right)$ explicitly, and prune _000_ from the rest. Physically this means that x_{0} is an isolated fixed point - no cycle stays in its vicinity for more than 2 iterations. In the notation of exercise 13.18, the alphabet is $\{1,2,3 ; \overline{0}\}$, and the remaining pruning rules have to be rewritten in terms of symbols $2=10,3=100$:
step 2. alphabet $\{1,2,3 ; \overline{0}\}$, prune _33_, _213_,_313_. Physically, the 3-cycle $\overline{3}=\overline{100}$ is pruned and no long cycles stay close enough to it for a single _100_ repeat. As in exercise 13.7, prohibition of _33_ is implemented by dropping the symbol " 3 " and extending the alphabet by the allowed blocks 13, 23:
step 3. alphabet $\{1,2, \underline{13}, \underline{23} ; \overline{0}\}$, prune _213_, $_\underline{23} \underline{13}-, \underline{13} \underline{13}-$, where $\underline{13}=13$, $\underline{\underline{23}}=23$ are now used as single letters. Pruning of the repetitions _1313_ (the 4-cycle $\overline{13}=\overline{1100}$ is pruned) yields the

Result: alphabet $\{1,2, \underline{23}, \underline{113} ; \overline{0}\}$, unrestricted 4-ary dynamics. The other remaining possible blocks __213_, _2313_ are forbidden by the rules of step 3. The topological zeta function is given by

$$
\begin{equation*}
1 / \zeta=\left(1-t_{0}\right)\left(1-t_{1}-t_{2}-t_{23}-t_{113}\right) \tag{S.44}
\end{equation*}
$$

for unrestricted 4-letter alphabet $\{1,2, \underline{23}, \underline{113}\}$.

Solution 13.8: Spectrum of the "golden mean" pruned map.

1. The idea is that with the redefinition $2=10$, the alphabet $\{1,2\}$ is unrestricted binary, and due to the piecewise linearity of the map, the stability weights factor in a way similar to (16.10).
2. As in (17.10), the spectral determinant for the Perron-Frobenius operator takes form (17.12)

$$
\operatorname{det}(1-z \mathcal{L})=\prod_{k=0}^{\infty} \frac{1}{\zeta_{k}}, \quad \frac{1}{\zeta_{k}}=\prod_{p}\left(1-\frac{z^{n_{p}}}{\left|\Lambda_{p}\right| \Lambda_{p}^{k}}\right)
$$

The mapping is piecewise linear, so the form of the topological zeta function worked out in (13.16) already suggests the form of the answer. The alphabet $\{1,2\}$ is unrestricted binary, so the dynamical zeta functions receive contributions only from the two fixed points, with all other cycle contributions cancelled exactly. The $1 / \zeta_{0}$ is the spectral determinant for the transfer operator like the one in (15.19) with the $T_{00}=0$, and in general

$$
\begin{align*}
\frac{1}{\zeta_{k}} & =\left(1-\frac{z}{\left|\Lambda_{1}\right| \Lambda_{1}^{k}}\right)\left(1-\frac{z^{2}}{\left|\Lambda_{2}\right| \Lambda_{2}^{k}}\right)\left(1-\frac{z^{3}}{\left|\Lambda_{12}\right| \Lambda_{12}^{k}}\right) \cdots \\
& =1-(-1)^{k}\left(\frac{z}{\Lambda^{k+1}}+\frac{z^{2}}{\Lambda^{2 k+2}}\right) . \tag{S.45}
\end{align*}
$$

The factor $(-1)^{k}$ arises because both stabilities Λ_{1} and Λ_{2} include a factor $-\Lambda$ from the right branch of the map.

Solution 13.11: Whence Möbius function? Written out $f(n)$ line-by-line for a few values of n, (13.38) yields

$$
\begin{align*}
f(1) & =g(1) \\
f(2) & =g(2)+g(1) \\
f(3) & =g(3)+g(1) \\
f(4) & =g(4)+g(2)+g(1) \\
& \cdots \tag{S.46}\\
f(6) & =g(6)+g(3)+g(2)+g(1)
\end{align*}
$$

Now invert recursively this infinite tower of equations to obtain

$$
\begin{aligned}
g(1) & =f(1) \\
g(2) & =f(2)-f(1) \\
g(3) & =f(3)-f(1) \\
g(4) & =f(4)-[f(2)-f(1)]-f(1)=f(4)-f(2) \\
& \cdots \\
g(6) & =f(6)-[f(3)-f(1)]-[f(2)-f(1)]-f(1)
\end{aligned}
$$

We see that $f(n)$ contributes with factor -1 if n prime, and not at all if n contains a prime factor to a higher power. This is precisely the raison d'etre for the Möbius function, with whose help the inverse of (13.38) can be written as the Möbius inversion formula [29.29] (13.39).

