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Chapter 5. Cycle stability

⇓PRIVATESolution 5.1: Driven damped harmonic oscillator limit cycle. Driven damped

harmonic oscillator stability is discussed in Chapter 4 of Tél and Gruiz [1.11].

⇑PRIVATESolution 5.2: A limit cycle with analytic stability exponent. The 2-d
flow (5.18) is cooked up so that x(t) = (q(t), p(t)) is separable (check!) in polar
coordinates q = r cosφ , p = r sinφ :

ṙ = r(1 − r2) , φ̇ = 1 . (S.9)

In the (r, φ) coordinates the flow starting at any r > 0 is attracted to the r = 1 limit
cycle, with the angular coordinate φ wraping around with a constant angular velocity
Ω = 1. The non–wandering set of this flow consists of the r = 0 equilibrium and the
r = 1 limit cycle.

equilibrium stability: As the change of coordinates is defined everywhere except
at the the equilibrium point (r = 0, any φ), the equilibrium stability matrix (4.28) has
to be computed in the original (q, p) coordinates,

A =
[

1 1
−1 1

]
. (S.10)

The eigenvalues are λ = μ± i ν = 1± i , indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant angular velocity Ω = 1. The
Poincaré section (p = 0, for example) return map is in this case also a stroboscopic
map, strobed at the period (Poincaré section return time) T = 2π/Ω = 2π. The radial
stability multiplier per one Poincaré return is |Λ| = eμT = e2π .

Limit cycle stability: From (S.9) the stability matrix is diagonal in the (r, φ)
coordinates,

A =
[

1 − 3r2 0
0 0

]
. (S.11)

The vanishing of the angular λθ = 0 eigenvalue is due to the rotational invariance of
the equations of motion along φ direction. The expanding λr = 1 radial eigenvalue
of the equilibrium r = 0 confirms the above equilibrium stability calculation. The
contracting λr = −2 eigenvalue at r = 1 decreases the radial deviations from r = 1
with the radial stability multiplier Λr = eμT = e−4π per one Poincaré return. This
limit cycle is very attracting.

Stability of a trajectory segment: Multiply (S.9) by r to obtain 1
2 ṙ

2 = r2 − r4 ,
set r2 = 1/u, separate variables du/(1− u) = 2 dt , and integrate: ln(1− u)− ln(1−
u0) = −2t . Hence the r(r0, t) trajectory is

r(t)−2 = 1 + (r−2
0 − 1)e−2t . (S.12)

The [1×1] fundamental matrix

J(r0, t) =
∂r(t)
∂r0

∣∣∣∣
r0=r(0)

. (S.13)
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satisfies (4.9)

d

dt
J(r, t) = A(r)J(r, t) = (1 − 3r(t)2)J(r, t) , J(r0, 0) = 1 .

This too can be solved by separating variables d(lnJ(r, t)) = dt − 3r(t)2dt , substi-
tuting (S.12) and integrating. The stability of any finite trajectory segment is:

J(r0, t) = (r20 + (1 − r20)e
−2t)−3/2e−2t . (S.14)

On the r = 1 limit cycle this agrees with the limit cycle multiplier Λr(1, t) = e−2t,
and with the radial part of the equilibrium instability Λr(r0, t) = et for r0 � 1.

P. Cvitanović

Solution 5.3: The other example of a limit cycle with analytic stability

exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

Solution 5.4: Yet another example of a limit cycle with analytic stability

exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.
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