Chapter 5. Cycle stability

Solution 5.1: Driven damped harmonic oscillator limit cycle. Driven damped harmonic oscillator stability is discussed in Chapter 4 of Tél and Gruiz [1.11].

Solution 5.2: A limit cycle with analytic stability exponent. The 2-d flow (5.18) is cooked up so that $x(t)=(q(t), p(t))$ is separable (check!) in polar coordinates $q=r \cos \phi, \quad p=r \sin \phi$:

$$
\begin{equation*}
\dot{r}=r\left(1-r^{2}\right), \quad \dot{\phi}=1 . \tag{S.9}
\end{equation*}
$$

In the (r, ϕ) coordinates the flow starting at any $r>0$ is attracted to the $r=1$ limit cycle, with the angular coordinate ϕ wraping around with a constant angular velocity $\Omega=1$. The non-wandering set of this flow consists of the $r=0$ equilibrium and the $r=1$ limit cycle.
equilibrium stability: As the change of coordinates is defined everywhere except at the the equilibrium point $(r=0$, any ϕ), the equilibrium stability matrix (4.28) has to be computed in the original (q, p) coordinates,

$$
A=\left[\begin{array}{cc}
1 & 1 \tag{S.10}\\
-1 & 1
\end{array}\right]
$$

The eigenvalues are $\lambda=\mu \pm i \nu=1 \pm i$, indicating that the origin is linearly unstable, with nearby trajectories spiralling out with the constant angular velocity $\Omega=1$. The Poincaré section ($p=0$, for example) return map is in this case also a stroboscopic map, strobed at the period (Poincaré section return time) $T=2 \pi / \Omega=2 \pi$. The radial stability multiplier per one Poincaré return is $|\Lambda|=e^{\mu T}=e^{2 \pi}$.

Limit cycle stability: From (S.9) the stability matrix is diagonal in the (r, ϕ) coordinates,

$$
A=\left[\begin{array}{cc}
1-3 r^{2} & 0 \tag{S.11}\\
0 & 0
\end{array}\right]
$$

The vanishing of the angular $\lambda_{\theta}=0$ eigenvalue is due to the rotational invariance of the equations of motion along ϕ direction. The expanding $\lambda_{r}=1$ radial eigenvalue of the equilibrium $r=0$ confirms the above equilibrium stability calculation. The contracting $\lambda_{r}=-2$ eigenvalue at $r=1$ decreases the radial deviations from $r=1$ with the radial stability multiplier $\Lambda_{r}=e^{\mu T}=e^{-4 \pi}$ per one Poincaré return. This limit cycle is very attracting.

Stability of a trajectory segment: Multiply (S.9) by r to obtain $\frac{1}{2} r^{2}=r^{2}-r^{4}$, set $r^{2}=1 / u$, separate variables $d u /(1-u)=2 d t$, and integrate: $\ln (1-u)-\ln (1-$ $\left.u_{0}\right)=-2 t$. Hence the $r\left(r_{0}, t\right)$ trajectory is

$$
\begin{equation*}
r(t)^{-2}=1+\left(r_{0}^{-2}-1\right) e^{-2 t} \tag{S.12}
\end{equation*}
$$

The $[1 \times 1]$ fundamental matrix

$$
\begin{equation*}
J\left(r_{0}, t\right)=\left.\frac{\partial r(t)}{\partial r_{0}}\right|_{r_{0}=r(0)} \tag{S.13}
\end{equation*}
$$

satisfies (4.9)

$$
\frac{d}{d t} J(r, t)=A(r) J(r, t)=\left(1-3 r(t)^{2}\right) J(r, t), \quad J\left(r_{0}, 0\right)=1
$$

This too can be solved by separating variables $d(\ln J(r, t))=d t-3 r(t)^{2} d t$, substituting (S.12) and integrating. The stability of any finite trajectory segment is:

$$
\begin{equation*}
J\left(r_{0}, t\right)=\left(r_{0}^{2}+\left(1-r_{0}^{2}\right) e^{-2 t}\right)^{-3 / 2} e^{-2 t} \tag{S.14}
\end{equation*}
$$

On the $r=1$ limit cycle this agrees with the limit cycle multiplier $\Lambda_{r}(1, t)=e^{-2 t}$, and with the radial part of the equilibrium instability $\Lambda_{r}\left(r_{0}, t\right)=e^{t}$ for $r_{0} \ll 1$.
P. Cvitanović

Solution 5.3: The other example of a limit cycle with analytic stability exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

Solution 5.4: Yet another example of a limit cycle with analytic stability exponent. Email your solution to ChaosBook.org and G.B. Ermentrout.

