Chapter 10. Qualitative dynamics, for pedestrians

Solution 10.1: Binary symbolic dynamics. Read the text.
Solution 10.2: Generating prime cycles. (No solution available.)
Solution 10.3: A contracting baker's map. (No solution available.)
Solution 10.4: Unimodal map symbolic dynamics. Hint: write down an arbitrary binary number such as $\gamma=.1101001101000 \ldots$ and generate the future itinerary S^{+}by checking whether $f^{n}(\gamma)$ is greater or less than $1 / 2$. Then verify that (??) recovers γ.

Solution 10.5: Unimodal map kneading value. (No solution available.)
Solution 10.6: One-dimensional repellers. (No solution available.)
\Downarrow PRELIMINARY
Solution 10.7: "Golden mean" pruned map.
介PRELIMINARY
(a) Consider the 3-cycle drawn in the figure. Denote the lengths of the two horizontal intervals by a and b. We have

$$
\frac{a}{b}=\frac{b}{a+b}
$$

so the slope is given by the golden mean, $\Lambda=\frac{b}{a}=\frac{1+\sqrt{5}}{2}$, and the piece-wise linear map is given by

$$
f(x)=\left\{\begin{array}{l}
\Lambda x, x \in[0,1 / 2] \\
\Lambda(1-x), x \in[1 / 2,1]
\end{array}\right.
$$

(b) Evaluate

$$
f\left(\frac{1}{2}\right)=\frac{1+\sqrt{5}}{4}, \quad f\left(\frac{1+\sqrt{5}}{4}\right)=\frac{-1+\sqrt{5}}{4}, \quad f\left(\frac{-1+\sqrt{5}}{4}\right)=\frac{1}{2} .
$$

Once a point enters the region covered by the interval \mathcal{M} of length $a+b$, bracketed by the 3 -cycle, it will be trapped there forever. Outside \mathcal{M}, all points on unit interval will be mapped to $(0,1 / 2]$, except for 0 . The points in the interval $\left(0, \frac{-1+\sqrt{5}}{4}\right)$ approach \mathcal{M} monotonically.
(c) It will be in $\left(\frac{1}{2}, \frac{1+\sqrt{5}}{4}\right)$.
(d) From (b), we know that except for the origin 0, all periodic orbits should be in \mathcal{M}. By (c), we cannot have the substring 00 in a periodic orbit (except for the fixed point at 0). Hence 00 is the only pruning block, and the symbolic dynamics is a finite subshift, with alphabet $\{0,1\}$ and only one grammar rule: a consecutive repeat of symbol 0 is inadmissible.
(e) Yes. 0 is a periodic orbit with the symbol sequence $\overline{0}$. It is a repeller and no point in its neighborhood will return. So it plays no role in the asymptotic dynamics.

Solution 10.8: Binary 3-step transition matrix. (No solution available.)
Solution 10.9: Heavy pruning. (No solution available.)

