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Dirac delta function
delta function!Dirac

Chapter 14. Transporting densities

Solution 14.1: Integrating over Dirac delta functions. (a) Whenever h(x)
crosses 0 with a nonzero velocity (det ∂xh(x) �= 0), the delta function contributes
to the integral. Let x0 ∈ h−1(0). Consider a small neighborhood V0 of x0 so that
h : V0 → V0 is a one-to-one map, with the inverse function x = x(h). By changing
variable from x to h, we have

∫
V0

dx δ(h(x)) =
∫

h(V0)

dh |det ∂hx| δ(h) =
∫

h(V0)

dh
1

|det ∂xh|
δ(h)

=
1

|det ∂xh|h=0
.

Here, the absolute value | · | is taken because delta function is always positive and we
keep the orientation of the volume when the change of variables is made. Therefore
all the contributions from each point in h−1(0) add up to the integral

∫
Rd

dx δ(h(x)) = Σx∈h−1(0)
1

|det ∂xh|
.

Notice that if det ∂xh = 0, then the delta function integral is not well defined.

(b) The formal expression can be written as the limit

F :=
∫

R

dx δ(x2) = lim
σ→0

∫
R

dx
e−

x4
2σ

√
2πσ

,

by invoking the approximation given in the exercise. The change of variable y = x2/
√
σ

gives

F = lim
σ→0

σ−3/4

∫
R+
dy

e−
y2

2
√

2πy
= ∞ ,

where R
+ represents the positive part of the real axis. So, the formal expression does

not make sense. Notice that x2 has a zero derivative at x = 0, which invalidates the
expression in (a).

(Yueheng Lan)

Solution 14.2: Derivatives of Dirac delta functions. We do this problem just
by direct evaluation. We denote by Ωy a sufficiently small neighborhood of y. (a)

∫
R

dx δ′(y) = Σx∈y−1(0)

∫
Ωy

dy det (
dy

dx
)−1δ′(y)

= Σx∈y−1(0)
δ(y)
|y′| |ε−ε −

∫
Ωy

dy
δ(y)
y′2

(−y′′) 1
y′

= Σx∈y−1(0)
y′′

|y′|y′2
,
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where the absolute value is taken to take care of the sign of the volume.

(b)

∫
R

dx δ(2)(y) = Σx∈y−1(0)

∫
Ωy

dy
δ(2)(y)
y′

= Σx∈y−1(0)
δ′(y)
|y′| |ε−ε −

∫
Ωy

dy
δ′(y)
y′2

(−y′′) 1
y′

= Σx∈y−1(0)
y′′δ(y)
|y′|y′2

|ε−ε −
∫

Ωy

dy δ(y)
d

dx
(
y′′

y′3
)
1
y′

= Σx∈y−1(0) −
∫

Ωy

dy δ(y)

(
y′′′

y′3
− 3

y′′2

y′4

)
1
y′

= Σx∈y−1(0)

(
3
y′′2

y′4
− y′′′

y′3

)
1

|y′| .

(c)

∫
R

dx b(x)δ(2)(y) = Σx∈y−1(0)

∫
Ωy

dy b(x)
δ(2)(y)
y′

= Σx∈y−1(0)
b(x)δ′(y)

|y′| |ε−ε −
∫

Ωy

dy δ′(y)
d

dx
(
b

y′
)
1
y′

= Σx∈y−1(0) − δ(y)
d

dx
(
b

y′
)
1
y′

|ε−ε +
∫

Ωy

dy δ(y)
d

dx
(
d

dx
(
b

y′
)
1
y′

)
1
y′

= Σx∈y−1(0)
1

|y′|
d

dx
(
b′

y′2
− by′′

y′3
))

= Σx∈y−1(0)
1

|y′|

[
b′′

y′2
− b′y′′

y′3
− 2

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]

= Σx∈y−1(0)
1

|y′|

[
b′′

y′2
− 3

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]
.

(Yueheng Lan)

Solution 14.3: Lt generates a semigroup. Every “sufficiently good” transfor-
mation f t in state space M is associated with a Perron-Frobenius operator Lt which
is when acting on a function ρ(x) in M

Lt · ρ(x) =
∫
M
dy δ(x− f t(y))ρ(y) .

In some proper function space F on M, the one parameter family of operators
{Lt}t∈R+ generate a semigroup. Let’s check this statement. For any t1, t2 > 0
and ρ ∈ F , the product “◦” of two operators is defined as usual

(Lt1 ◦ Lt2) · ρ(y) = Lt1 · (Lt2 · ρ)(y) .
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So, we have

(Lt1 ◦ Lt2)(y, x) =
∫
M
dz Lt1(y, z)Lt2(z, x)

=
∫
M
dz δ(y − f t1(z))δ(z − f t2(x))

= δ(y − f t1(f t2(x)))
= δ(y − f t1+t2(x))
= Lt1+t2(y, x) ,

where the semigroup property f t1(f t2(x)) = f t1+t2(x) of f t has been used. This
proves the claim in the title.

(Yueheng Lan)

Solution 14.5: Invariant measure. Hint: We do (a),(b),(c),(d) for the first
map and (e) for the second.

(a) The partition point is in the middle of [0, 1]. If the density on the two pieces
are two constants ρA

0 and ρB
0 , respectively, the Perron-Frobenius operator still leads

to the piecewise constant density

ρA
1 =

1
2
(ρA

0 + ρB
0 ) , ρB

1 =
1
2
(ρA

0 + ρB
0 ) .

Notice that in general if a finite Markov partition exists and the map is linear on each
partition cell, a finite-dimensional invariant subspace which is a piecewise constant
function can always be identified in the function space.

(b) From the discussion of (a), any constant function on [0, 1] is an invariant
measure. If we consider the invariant probability measure, then the constant has to
be 1.

(c) As the map is invariant in [0, 1] (there is no escaping), the leading eigenvalue
of L is always 1 due to the “mass” conservation.

(d) Take a typical point on [0, 1] and record its trajectory under the first map for
some time (105 steps). Plot the histogram...ONLY 0 is left finally!! This happens be-
cause of the finite accuracy of the computer arithmetics. A small trick is to change the
slope 2 to 1.99999999. You will find a constant measure on [0, 1] which is the natural
measure. Still, the finite precision of the computer will make every point eventually
periodic and strictly speaking the measure is defined only on subsets of lattice points.
But as the resolution improves, the computer-generated measure steadily approaches
the natural measure. For the first map, any small deviation from the constant profile
will be stretched and smeared out. So, the natural measure has to be constant.

(e) Simple calculation shows that α is the partition point. We may use A ,B to
mark the left and right part of the partition, respectively. A maps to B and B maps
to the whole interval [0, 1]. As the magnitude of the slope Λ = (

√
5 + 1)/2 is greater

than 1, we may expect the natural measure is still piecewise constant with eigenvalue
1. The determining equation is

(
0 1/Λ

1/Λ 1/Λ

)(
ρA

ρB

)
=
(
ρA

ρB

)
,
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Ulam!map, skew
Ulam!map, skew

which gives ρB/ρA = Λ.

For the second map, the construction of Exercise 13.6 is worth a look.

(Yueheng Lan)

Solution 14.7: Eigenvalues of the skew Ulam tent map Perron-Frobenius
operator. If we have density ρn(x), the action of the Perron-Frobenius operator
associated with f(x) gives a new density

ρn+1(x) =
1
Λ0
ρn(x/Λ0) +

1
Λ1
ρn(1 − x/Λ1) ,

where Λ1 = Λ0
Λ0−1 . The eigenvalue equation is given by

ρn+1(x) = λρn(x) . (S.47)

We may solve it by assuming that the eigenfunctions are N -th order polynomials P (N)
(check it). Indeed, detailed calculation gives the following results:

• P (0) gives λ = 1, corresponding to the expected leading eigenvalue.

• P (1) gives λ = 1
Λ2

0
− 1

Λ2
1

= 2
Λ0

− 1,

• P (2) gives λ = 1
Λ3

0
+ 1

Λ3
1
,

• P (3) gives λ = 1
Λ4

0
− 1

Λ4
1
,

• The guess is that P (N) gives λ = 1
ΛN+1

0
+ (−1)N 1

ΛN+1
1

.

The final solution is that the piecewise linear function ρA = −Λ0 , ρ
B = Λ1 gives the

eigenvalue 0. If only the continuous functions are considered, this kind of eigenfunction
of course should not be included.

(Yueheng Lan)

Solution 14.7: Eigenvalues of the skew Ulam tent map Perron-Frobenius
operator. The first few eigenvalues are

es0 = 1 , es1 =
2
Λ0

− 1

es2 =
1
4

+
3
4

(
2
Λ0

− 1
)2

, es3 =
1
2

(
2
Λ0

− 1
)

+
1
2

(
2
Λ0

− 1
)3

. . .

For eigenvectors (invariant densities for skew tent maps), see for example L. Billings

and E.M. Bolt [14.10] .

Solution 14.10: A as a generator of translations. If v is a constant in space,
Taylor series expansion gives

a(x+ tv) = Σ∞
k=0

1
k!

(tv
∂

∂x
)ka(x) = etv ∂

∂x a(x) .

(Yueheng Lan)
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