Chapter 4. Local stability

Solution 4.1: Trace-log of a matrix. 1) one method is to first check that this is true for any Hermitian matrix M. Then write an arbitrary complex matrix as sum $M=A+z B, A, B$ Hermitian, Taylor expand in z and prove by analytic continuation that the identity applies to arbitrary M. (David Mermin)
2) another method: evaluate $\frac{d}{d t} \operatorname{det}\left(e^{t \ln M}\right)$ by definition of derivative in terms of infinitesimals. ${ }^{1}$ (Kasper Juel Eriksen)
3) check appendix M. 1
4) This identity makes sense for a matrix $M \subset \mathbb{C}^{n \times n}$, if $\left|\prod_{i=1}^{n} \lambda_{i}\right|<\infty$ and $\left\{\left|\lambda_{i}\right|>0, \forall i\right\}$, where $\left\{\lambda_{i}\right\}$ is a set of eigenvalues of M. Under these conditions there exist a nonsingular $O: M=O D O^{-1}, D=\operatorname{diag}\left[\left\{\lambda_{i}, i=1, \ldots, n\right\}\right]$. If $f(M)$ is a matrix valued function defined in terms of power series then $f(M)=O f(D) O^{-1}$, and $f(D)=\operatorname{diag}\left[\left\{f\left(\lambda_{i}\right)\right\}\right]$. Using these properties and cyclic property of the trace we obtain

$$
\exp (\operatorname{tr}(\ln M))=\exp \left(\sum_{i} \ln \lambda_{i}\right)=\prod_{i} \lambda_{i}=\operatorname{det}(M)
$$

5) Consider $M=\exp A$.

$$
\operatorname{det} M=\operatorname{det} \lim _{n \rightarrow \infty}\left(\mathbf{1}+\frac{1}{n} A\right)^{n}=\lim _{n \rightarrow \infty}\left(\mathbf{1}+\frac{1}{n} \operatorname{tr} A+\ldots\right)^{n}=\exp (\operatorname{tr}(\ln M))
$$

Solution 4.2: Stability, diagonal case. The relation (4.17) can be verified by noting that the defining product (4.13) can be rewritten as

$$
\begin{align*}
e^{t \mathbf{A}} & =\left(\mathbf{U U}^{-1}+\frac{t \mathbf{U} \mathbf{A}_{D} \mathbf{U}^{-1}}{m}\right)\left(\mathbf{U U}^{-1}+\frac{t \mathbf{U A}_{D} \mathbf{U}^{-1}}{m}\right) \cdots \\
& =\mathbf{U}\left(I+\frac{t \mathbf{A}_{D}}{m}\right) \mathbf{U}^{-1} \mathbf{U}\left(I+\frac{t \mathbf{A}_{D}}{m}\right) \mathbf{U}^{-1} \cdots=\mathbf{U} e^{t \mathbf{A}_{D}} \mathbf{U}^{-1} \tag{S.8}
\end{align*}
$$

Solution 4.3: State space volume contraction in Rössler flow. Even if it were worth your while, the contraction rate cannot be linked to a computable fractal dimension. The relation goes through expanding eigenvalues, sect. 5.4. As the contraction is of order of 10^{-15}, there is no numerical algorithm that would give you any fractal dimension other than $D_{H}=1$ for this attractor.

Solution 4.4: Topology of the Rössler flow.

1. The characteristic determinant of the stability matrix that yields the equilibrium point stability (4.28) yields

$$
\left|\begin{array}{ccc}
-\lambda & -1 & -1 \\
1 & a-\lambda & 0 \\
z^{ \pm} & 0 & x^{ \pm}-c-\lambda
\end{array}\right|=0
$$

[^0]$$
\lambda^{3}+\lambda^{2}\left(-a-x^{ \pm}+c\right)+\lambda\left(a\left(x^{ \pm}-c\right)+1+x^{ \pm} / a\right)+c-2 x^{ \pm}=0
$$

Equation (4.47) follows after noting that $x^{ \pm}-c=c\left(p^{ \pm}-1\right)=-c p^{\mp}$ and $2 x^{ \pm}-c=c\left(2 p^{ \pm}-1\right)= \pm c \sqrt{D}$, see (2.9).
2. Approximate solutions of (4.47) are obtained by expanding $p^{ \pm}$and \sqrt{D} and substituting into this equation. Namely,

$$
\begin{aligned}
\sqrt{D} & =1-2 \epsilon^{2}-2 \epsilon^{4}-4 \epsilon^{6}-\ldots \\
p^{-} & =\epsilon^{2}+\epsilon^{4}+2 \epsilon^{6}+\ldots \\
p^{+} & =1-\epsilon^{2}-\epsilon^{4}-2 \epsilon^{6}+\ldots
\end{aligned}
$$

In case of the equilibrium " - ", close to the origin expansion of (4.47) results in

$$
\left(\lambda^{2}+1\right)(\lambda+c)=-\epsilon \lambda\left(1-c^{2}-c \lambda\right)+\epsilon^{2} c\left(\lambda^{2}+2\right)+o\left(\epsilon^{2}\right)
$$

The term on the left-hand side suggests the expansion for eigenvalues as

$$
\lambda_{1}=-c+\epsilon a_{1}+\ldots, \quad \lambda_{2}+i \theta_{2}=\epsilon b_{1}+i+\ldots
$$

after some algebra one finds the first order correction coefficients $a_{1}=c /\left(c^{2}+1\right)$ and $b_{1}=\left(c^{3}+i\right) /\left(2\left(c^{2}+1\right)\right)$. Numerical values are $\lambda_{1} \approx-5.694, \lambda_{2}+i \theta_{2} \approx$ $0.0970+i 1.0005$.
In case of p^{+}, the leading order term in (4.47) is $1 / \epsilon$. Set $x=\lambda / \epsilon$, then expansion of (4.47) results in

$$
x=c-\epsilon x-\epsilon^{2}(2 c-x)-\epsilon^{3}\left(x^{3}-c x^{2}\right)-\epsilon^{4}\left(2 c-x\left(1+c^{2}\right)+c x^{2}\right)+o\left(\epsilon^{4}\right)
$$

Solve for real eigenvalue first. Set $x=c+\epsilon a_{1}+\epsilon^{2} a_{2}+\epsilon^{3} a_{3}+\epsilon^{4} a_{4}+\ldots$. The subtle point here is that leading order correction term of the real eigenvalue is ϵa_{1}, but to determine leading order of the real part of complex eigenvalue, one needs all terms a_{1} through a_{4}.
Collecting powers of ϵ results in

$$
\begin{array}{lll}
\epsilon: & a_{1}+c=0 & a_{1}=-c \\
\epsilon^{2}: & c+a_{1}+a_{2}=0 & a_{2}=0 \\
\epsilon^{3}: & a_{1}-a_{2}-a_{3}=0 & a_{3}=-c \\
\epsilon^{4}: & c+c^{2} a_{1}-a_{2}+a_{3}+a_{4}=0 & a_{4}=c^{3}
\end{array}
$$

hence

$$
\mu_{1}=\epsilon x=a-a^{2} / c+o\left(\epsilon^{3}\right) \approx 0.192982
$$

To calculate the complex eigenvalue, one can make use of identities $\operatorname{det} A=$ $\Pi \lambda=2 x^{+}-c$, and $\operatorname{tr} A=\sum \lambda=a+x^{+}-c$. Namely,

$$
\begin{aligned}
& \lambda_{2}=\frac{1}{2}\left(a-c p^{-}-\lambda_{1}\right)=-\frac{a^{5}}{2 c^{2}}+o\left(\epsilon^{5}\right) \approx-0.49 \times 10^{-6} \\
& \theta_{2}=\sqrt{\frac{2 x^{+}-c}{\lambda_{1}}-\lambda_{2}^{2}}=\sqrt{\frac{a+c}{a}}(1+o(\epsilon)) \approx 5.431
\end{aligned}
$$

(Rytis Paškauskas)

[^0]: ${ }^{1}$ Predrag: to be fleshed out

