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Chapter 4. Local stability

Solution 4.1: Trace-log of a matrix. 1) one method is to first check that this
is true for any Hermitian matrix M . Then write an arbitrary complex matrix as sum
M = A+ zB, A, B Hermitian, Taylor expand in z and prove by analytic continuation
that the identity applies to arbitrary M . (David Mermin)

2) another method: evaluate d
dtdet

(
et ln M

)
by definition of derivative in terms

of infinitesimals. 1 (Kasper Juel Eriksen)

3) check appendix M.1

4) This identity makes sense for a matrix M ⊂ Cn×n, if |
∏n

i=1 λi| < ∞ and
{|λi| > 0, ∀i}, where {λi} is a set of eigenvalues of M . Under these conditions there
exist a nonsingular O : M = ODO−1, D = diag[{λi, i = 1, . . . , n}]. If f(M) is a
matrix valued function defined in terms of power series then f(M) = Of(D)O−1,
and f(D) = diag[{f(λi)}]. Using these properties and cyclic property of the trace we
obtain

exp(tr (lnM)) = exp

(∑
i

lnλi

)
=
∏

i

λi = det (M)

5) Consider M = expA.

detM = det lim
n→∞

(
1 +

1
n
A

)n

= lim
n→∞(1 +

1
n

trA+ . . .)n = exp(tr (lnM))

Solution 4.2: Stability, diagonal case. The relation (4.17) can be verified by
noting that the defining product (4.13) can be rewritten as

etA =
(
UU−1 +

tUADU−1

m

)(
UU−1 +

tUADU−1

m

)
· · ·

= U
(
I +

tAD

m

)
U−1U

(
I +

tAD

m

)
U−1 · · · = UetADU−1 . (S.8)

Solution 4.3: State space volume contraction in Rössler flow. Even

if it were worth your while, the contraction rate cannot be linked to a computable

fractal dimension. The relation goes through expanding eigenvalues, sect. 5.4. As the

contraction is of order of 10−15, there is no numerical algorithm that would give you

any fractal dimension other than DH = 1 for this attractor.

Solution 4.4: Topology of the Rössler flow.

1. The characteristic determinant of the stability matrix that yields the equilibrium
point stability (4.28) yields∣∣∣∣∣ −λ −1 −1

1 a− λ 0
z± 0 x± − c− λ

∣∣∣∣∣ = 0

1Predrag: to be fleshed out
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λ3 + λ2(−a− x± + c) + λ(a(x± − c) + 1 + x±/a) + c− 2x± = 0 .

Equation (4.47) follows after noting that x± − c = c(p± − 1) = −cp∓ and
2x± − c = c(2p± − 1) = ±c

√
D, see (2.9).

2. Approximate solutions of (4.47) are obtained by expanding p± and
√
D and

substituting into this equation. Namely,

√
D = 1 − 2ε2 − 2ε4 − 4ε6 − . . .

p− = ε2 + ε4 + 2ε6 + . . .
p+ = 1 − ε2 − ε4 − 2ε6 + . . .

In case of the equilibrium “−”, close to the origin expansion of (4.47) results in

(λ2 + 1)(λ+ c) = −ελ(1 − c2 − cλ) + ε2c(λ2 + 2) + o(ε2)

The term on the left-hand side suggests the expansion for eigenvalues as

λ1 = −c+ εa1 + . . . , λ2 + iθ2 = εb1 + i+ . . . .

after some algebra one finds the first order correction coefficients a1 = c/(c2+1)
and b1 = (c3 + i)/(2(c2 + 1)). Numerical values are λ1 ≈ −5.694, λ2 + iθ2 ≈
0.0970 + i1.0005.

In case of p+, the leading order term in (4.47) is 1/ε. Set x = λ/ε, then
expansion of (4.47) results in

x = c− εx− ε2(2c− x) − ε3(x3 − cx2) − ε4(2c− x(1 + c2) + cx2) + o(ε4)

Solve for real eigenvalue first. Set x = c+ εa1 + ε2a2 + ε3a3 + ε4a4 + . . .. The
subtle point here is that leading order correction term of the real eigenvalue is
εa1, but to determine leading order of the real part of complex eigenvalue, one
needs all terms a1 through a4.

Collecting powers of ε results in

ε : a1 + c = 0 a1 = −c
ε2 : c+ a1 + a2 = 0 a2 = 0
ε3 : a1 − a2 − a3 = 0 a3 = −c
ε4 : c+ c2a1 − a2 + a3 + a4 = 0 a4 = c3 .

hence

μ1 = εx = a− a2/c+ o(ε3) ≈ 0.192982 .

To calculate the complex eigenvalue, one can make use of identities detA =∏
λ = 2x+ − c, and trA =

∑
λ = a+ x+ − c. Namely,

λ2 = 1
2 (a− cp− − λ1) = − a5

2c2 + o(ε5) ≈ −0.49 × 10−6 ,

θ2 =
√

2x+−c
λ1

− λ2
2 =

√
a+c

a (1 + o(ε)) ≈ 5.431 .

(Rytis Paškauskas)
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