Problem 1

(a) Compute the covariant basis vectors \mathbf{q}_i, contravariant basis vectors \mathbf{q}^i, and normalized basis vectors \hat{i} corresponding to the (primed) spherical polar coordinates with polar angle θ and azimuthal angle ϕ, i.e., write down their components in (unprimed) Cartesian coordinates.

(b) Compute the metric g'_{ij} and the Lamé coefficients h'_{i} (in spherical polar coordinates).

(c) Compute the components u'_i of the vector $\mathbf{u} = \mathbf{z} \times \mathbf{r}$ in all three bases (\mathbf{q}_i, \mathbf{q}^i, and \hat{i}) associated with spherical polar coordinates.

(d) For a circular ring of radius R centered around the origin and lying in the plane normal to the z-axis, compute the matrix elements of the electric quadrupole tensor $Q = \int_V [3\mathbf{rr} - \mathbf{r}^2 \mathbf{1}] \rho(\mathbf{r}) dV$ (1)
in the covariant basis \mathbf{q}_r, \mathbf{q}_ϕ, \mathbf{q}_θ, assuming the total charge q is distributed uniformly around the ring. You can either compute Q^i_j in Cartesian coordinates first and then use coordinate transformation to obtain matrix elements Q'^i_j in spherical polar coordinates or you can compute the matrix elements Q'^i_j directly from the definition (1).

(e) Compute the matrix elements Q'_{ij} of Q in the normalized basis \hat{r}, $\hat{\phi}$, $\hat{\theta}$ using any method you want.

Problem 2

Beer bubbles rise due to buoyancy (the vapor inside the bubbles is much lighter than the beer itself). Let’s compute the force on a bubble directly, instead of using the Archimedes’ law. The force on the bubble has two components: the body force

$$\mathbf{F}_b = \int_V \mathbf{f}_b dV,$$

where $\mathbf{f}_b = -\rho_{\text{vapor}} g \mathbf{z}$ is the body force density (gravity acting on vapor inside) and the surface force due to the pressure p in the liquid. The surface force is

$$\mathbf{F}_s = \int_S \sigma dS$$

where $dS = \hat{n} dS$, \hat{n} is the surface normal and σ is the (symmetric) stress tensor in the liquid. For a stationary fluid (beer), the stress tensor itself can be computed using local force equilibrium for the liquid

$$\mathbf{f}_b + \nabla \sigma = 0,$$

where $\mathbf{f}_b = -\rho_{\text{beer}} g \mathbf{z}$ and $\nabla \sigma = \hat{e}_j \partial_i \sigma_{ij}$ in any orthonormal basis $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$. Since $\rho_{\text{vapor}} \ll \rho_{\text{beer}}$, the total force $\mathbf{F}_b + \mathbf{F}_s \approx \mathbf{F}_s$.

a) In Cartesian coordinates, it can be shown that $\sigma_{ij} = q(x,y,z) \delta_{ij}$. Compute the function q using (4) and give it a physical interpretation.

b) Compute the matrix elements σ_{ij} of the stress tensor in the normalized basis \hat{r}, $\hat{\phi}$, $\hat{\theta}$ by using a coordinate transformation from Cartesian to spherical coordinates.

c) Use (3) and the result of part (b) to compute the force of beer on spherical bubble of radius a. Does your answer agree with the Archimedes’ force?