Problem 1:

1) Interaction of an electric charge and an electromagnetic wave suggests that we use ε_0 and c along with m, q, and λ. Along with σ_T there are 6 parameters and 4 basic dimensions (L, T, M, A), so according to the Pi-theorem we should have 2 nondimensional combinations. A standard (by now) calculation gives

$$\Pi_1 = \frac{\sigma_T}{\lambda^2}, \quad \Pi_2 = \frac{q^2/\varepsilon_0 c^2}{m c^2}$$

so that $\Pi_1 = f(\Pi_2)$ or

$$\sigma_T = \lambda^2 f\left(\frac{q^2}{\varepsilon_0 c^2 m \lambda}\right)$$

This result applied to a single charge q, and so cannot possibly depend on the wavelength λ, so that $f(x) = x^2$ and

$$\sigma_T \sim \left(\frac{q^2}{\varepsilon_0 c m c^2}\right)^2$$

The exact result is: $\sigma_T = \frac{8\pi}{3} \left(\frac{q^2}{4\pi^2 \varepsilon_0 m c^2}\right)^2$
2) Since there are no point charges, we should not use \(\varepsilon_0 \). Instead, we should use either \(\varepsilon \) or \(\bar{n} \) (which is a function of \(\varepsilon \)). Of the 5 parameters \((\sigma_p, d, A, \bar{n}, c)\) only \(c \) has dimension which involves \(T \), so \(c \) can be discarded, leaving 4 parameters and one dimension \((L)\). We therefore have 3 nondimensional combinations:

\[
\Pi_1 = \frac{\sigma_p}{\chi^2}, \quad \Pi_2 = \frac{\chi}{d}, \quad \Pi_3 = \bar{n}
\]

so that \(\Pi_1 = f(\Pi_2, \Pi_3) \) or

\[
\sigma_p = \chi^2 f\left(\frac{A}{d}, \bar{n}\right)
\]

Scattering cross section is proportional to the intensity of the scattered wave (and hence proportional to the square of the electric field \(E \) due to polarization of the dielectric). Polarization field \(E \approx \text{volume} \times d^3/1 \), so that \(\sigma_p \propto E^2 \times d^3/1 \), so that

\[
\sigma_p = \alpha^2 \left(\frac{d}{\lambda}\right)^6 f_1(\bar{n}) = \frac{d^6}{\lambda^4} f_1(\bar{n}) \quad \left[f_1(\bar{n}) = \frac{2\pi}{3\lambda^2} \left(\frac{\bar{n}^2-1}{\bar{n}^2+2}\right)^2 \right]
\]
3) The dimensions are:
\[[n] = \text{L}^{-3} \quad [6] = \text{L}^2 \quad [S_{L}] = \text{L} \]
so that \[\frac{S_{L}^2}{6} = g(n^2 \sigma^3) \]
\[\Rightarrow S_{L} = \sigma^{1/2} g(n^2 \sigma^3) \]

4) We have \[\partial_{x} f = D \partial_{x}^2 f \Rightarrow \frac{f}{S_{L}} \sim D \]

Furthermore, scattering being a random walk process, we have \(\Delta \propto n \), since scattering events are uncorrelated. Collecting all the information, we find
\[S_{L} \sim D^{-1} \propto n^{-1} \Rightarrow S_{L} \sim (\sigma n)^{-1} \]

Problem 2:

1) \(d \) and \(g \) only appear as a product \(dg \), so we have 6 parameters \((\theta, k, d, \partial, \Delta T, p) \) and 4 dimensions \((M, T, L, \theta) \), yielding \(6 - 4 = 2 \) non-dimensional combinations.
2) Introducing the scales \(S_L = d \), \(S_\theta = \Delta T \), \(S_t = S_L / S_t \) and \(S_\rho = S_L / S_t \) we obtain

\[
\frac{s_v}{s_t} \left(\partial_t \bar{\nu} + \bar{\nu} \cdot \bar{\nabla} \bar{\nu} \right) = -\frac{s_p \bar{\rho}}{\rho s_L} \bar{\nabla} \bar{p} + \frac{\partial \nu}{s_L} \bar{\nabla}^2 \bar{\nu} + \partial \xi \bar{\delta} \bar{\theta} \bar{\nabla}^2 \bar{\theta} \\
\frac{s_\theta}{s_t} \left(\partial_t \bar{\theta} + \bar{\nu} \cdot \bar{\nabla} \bar{\theta} \right) = \frac{\Delta T}{d} s_v \nu \bar{\nu} + \frac{k}{s_L^2} \bar{\nabla}^2 \bar{\theta}
\]

Dividing by \(s_v / s_t \) (or \(s_\theta / s_t \)) we obtain:

\[
\partial_t \bar{\nu} + \bar{\nu} \cdot \bar{\nabla} \bar{\nu} = -\frac{s_p \bar{\rho}}{\rho s_v^2} \bar{\nabla} \bar{p} + \frac{\partial \nu}{s_v} \bar{\nabla}^2 \bar{\nu} + \frac{\partial \xi s_L}{s_v^2} \bar{\delta} \bar{\theta} \bar{\nabla}^2 \bar{\theta} \\
\partial_t \bar{\theta} + \bar{\nu} \cdot \bar{\nabla} \bar{\theta} = \frac{\Delta T}{s_\theta} s_L \nu \bar{\nu} + \frac{k}{s_L s_v} \bar{\nabla}^2 \bar{\theta}
\]

Choosing \(s_p = \rho s_v^2 \), \(s_v = d / S_L \) we obtain

\[
\partial_t \bar{\nu} + \bar{\nu} \cdot \bar{\nabla} \bar{\nu} = -\bar{\nabla} \bar{p} + \bar{\nabla}^2 \bar{\nu} + \text{Ra} \bar{\theta} \bar{\nabla}^2 \bar{\theta} \\
\partial_t \bar{\theta} + \bar{\nu} \cdot \bar{\nabla} \bar{\theta} = \nu \bar{\nu} + \text{Pr}^{-1} \bar{\nabla}^2 \bar{\theta}
\]

where \(\text{Pr} = \frac{\nu}{\kappa} \) is the Prandtl number

and \(\text{Ra} = \frac{\partial g \Delta T d^3}{\kappa} \) is the Rayleigh number
3) The timescale $S_t = S_L / S_v = S_L^2 / \nu = d^2 / \nu$ is the time it takes for momentum to "diffuse" across the entire fluid layer of depth d. This describes the action of viscosity.

The problem has another "diffusion constant" — thermal diffusivity κ, so there is another timescale $S_t = d^2 / \kappa = Pr \cdot (d^2 / \nu)$, which corresponds to the time temperature diffuses across the fluid layer.

These two timescales determine how quickly perturbations in \bar{u} and Θ are equilibrated in this problem.

Problem 3:

Since $\mathbf{E} = i \hbar \partial_t \Psi$, we can always write

$$\psi(\bar{\mathbf{r}}, t) = \bar{\psi}(\bar{\mathbf{r}}) e^{i \frac{\hbar}{\nu} E t}$$

So from now on we will only concentrate on the spatial part of the wavefunction which is described by the following equation:
\[E\psi = -\frac{\hbar^2}{2m}\nabla^2 \psi + U\psi + \frac{4\pi^2\hbar^2}{m} \delta(x - y)^2 \psi \]

1) Using the normalization condition we find \(|\psi|^2 = n \), so we can nondimensionalize this equation by introducing the scales \(s_L \) and \(s_\psi \)

\[E\psi = -\frac{\hbar^2}{2m s_L^2} \nabla^2 \psi + \frac{4\pi^2\hbar^2}{m} \delta(x - y) \psi \]

Dividing by \(E \) and choosing \(s_L^2 = \frac{\hbar^2}{2mE} \), we find

\[\psi = -\nabla^2 \psi + \varepsilon \psi \]

where \(\varepsilon = \frac{4\pi^2\hbar^2}{mE} \) is a nondimensional parameter which quantifies the ratio of interaction energy to the energy of non-interacting bosons.

In order to have \(|\psi| = \sqrt{n} \), we should have \(\psi \sim e^{i\alpha x} \), with \(\alpha \)-real. Hence, \(\alpha^2 = 1 - \varepsilon \).

In dimensional units

\[\psi = \sqrt{n} e^{i\alpha x/s_L} = \sqrt{n} \exp \left(i \frac{\sqrt{1 - \frac{4\pi^2\hbar^2}{mE}}}{\hbar / \sqrt{2mE}} x \right) \]
2) It is easy to check that

\[f = a \tanh \frac{x}{s} \Rightarrow f'' = \frac{2}{a^2 s^2} f^3 - \frac{2}{s^2} f \]

Using non-dimensionalization from part 1:

\[\psi'' = \psi^4 = \beta |\psi|^3 \psi - \psi \]

and this equation has a solution \(\psi = a \tanh x/s \)
with \(2/s^2 = 1 \) and \(2/a^2 s^2 = \beta \) (\(s = \sqrt{2}, \ a = \beta^{-1/2} \)).

In dimensional units

\[\Psi = \beta^{-1/2} \tanh \left(\pm \frac{x}{\sqrt{2} s_e} \right) = \sqrt{\frac{mE}{4 \pi \hbar^2 a_s}} \tanh \left(\pm \frac{\sqrt{mE}}{\hbar} x \right) \]

This solution only works for \(\beta > 0 \) (\(a_s > 0, \ E > 0 \)).

For \(a_s < 0 \) we use another trial function

\[f = \frac{a}{\cosh \frac{x}{s}} \Rightarrow f'' = \frac{1}{s^2} f - \frac{2}{a^2 s^2} f^3 \]

This is not a solution for \(E > 0 \) (the signs are wrong). For \(E < 0 \) and \(a_s < 0 \) again \(\beta > 0 \), but now \(\hbar^2/2mE = -1 \), not +1, so that
\[\nabla^2 \psi = \psi' = -\left(\beta \frac{1}{2} \psi^3 \psi - \psi \right) \]

And \(\psi = a / \cosh(x/s) \) with \(s=1 \) and \(2/a^2 = \beta \).

In dimensional form:

\[
\psi = \sqrt{\frac{2}{\beta}} \frac{1}{\cosh(\pm \frac{x}{sL})} = \sqrt{\frac{2mE}{4\pi^2 \hbar^2 \alpha}} \frac{1}{\cosh(\pm \frac{\sqrt{2mE}}{\hbar} x)}
\]

Problem 4:

1) The dimensions are:

\([R] = L^2 M T^{-3} A^{-2}, \ [L] = M L^2 T^{-2} A^2, \ [C] = M^{-1} L^{-2} T^4 A^2\)

It is easy to check that \(N = L / R^2 C \) is dimensionless.

2) Introducing scales \(S_Q \) and \(S_T \) we obtain

\[
\frac{L S^2 Q}{S_T^2} \ddot{Q} + \frac{R S_Q}{S_T} \dot{Q} + \frac{S_Q}{c} \dot{Q} = 0
\]

\[
\Rightarrow \ddot{Q} + \frac{R S_T}{L} \dot{Q} + \frac{S_T^2}{L C} \dot{Q} = 0
\]

Choosing \(S_Q = Q_0 \) and \(S_T = L/R \) we obtain

\[\dot{q} + \dot{q} + 2q = 0, \ q = \eta \]
Alternatively choosing \(S_T = \sqrt{\frac{L}{C}} \), we find instead
\[
\ddot{q} + 3\dot{q} + q = 0, \quad \varepsilon = \frac{1}{2}
\]

Finally, multiplying the equation for \(q \) by \(1/RST \) we find
\[
\frac{1}{RST} \ddot{Q} + \dot{Q} + \frac{S_T}{RC} Q = 0
\]

Setting \(S_T = RC \) we obtain
\[
3\ddot{q} + \dot{q} + q = 0, \quad \varepsilon = 1
\]

3. The three time scales correspond to:
- \(L/R \) - time to dissipate magnetic field energy into Joule heat.
- \(\sqrt{L/C} \) - period of oscillation in LC circuit (time to convert electric \(\leftrightarrow \) magnetic field energy)
- \(RC \) - time to dissipate electric field energy into Joule heat
4. The resistance is

\[R = \frac{\text{length}}{\text{area}} \cdot \sigma = \frac{\pi D}{\varepsilon_0 \pi r^2} = \frac{D}{\varepsilon_0 r^2} \]

The capacitance is

\[C = \varepsilon_0 \cdot \frac{\text{area}}{\text{gap}} = \varepsilon_0 \cdot \frac{\pi r^2}{a} \]

The inductance is

\[L = \frac{\Phi}{\dot{I}}, \quad \Phi = \oint B \cdot ds \]

Using straight wire result for \(B \):

\[\Phi = \int_0^{2\pi} dy \int_0^{D/2-a} x \cdot \frac{\mu_0 I}{2 \left(\frac{D}{2} - x \right)} = \frac{\pi}{2} \mu_0 I D \left(\ln \frac{D}{2a} - 1 \right) \]

\[\Rightarrow L \sim \mu_0 D \ln \frac{D}{a} \]

In nondimensional form, \(\frac{L}{\mu_0 D} = f \left(\frac{D}{a} \right), \quad f(x) = \ln x \)

\[\Rightarrow \eta = \frac{L}{R C} = \frac{\mu_0 D \ln \frac{D}{a}}{\left(\frac{D}{2a} \right)^2 \cdot \frac{\varepsilon_0 \pi r^2}{a}} \]