Problem 3.2.6 (Eliminating the cubic term)

Consider the system
\[\dot{X} = RX - X^2 + aX^3 + O(X^4), \]
where \(R \neq 0 \). We want to find a new variable \(x \) such that the system transforms into
\[\dot{x} = Rx - x^2 + O(x^4). \]

This would be a big improvement, since the cubic term has been eliminated and the error term has been bumped up to fourth order.

Let \(x = X + bX^3 + O(X^4) \), where \(b \) will be chosen later to eliminate the cubic term in the differential equation for \(x \). This is called a near-identity transformation, since \(x \) and \(X \) are practically equal; they differ by a tiny cubic term. (We have skipped the quadratic term \(X^2 \), because it is not needed—you should check this later.) Now we need to rewrite the system in terms of \(x \); this calculation requires a few steps.

(a)
Show that the near-identity transformation can be inverted to yield \(X = x + cx^3 + O(x^4) \), and solve for \(c \).

(b)
Write \(\dot{x} = \dot{X} + 3bX^2 \dot{X} + O(X^4) \), and substitute for \(X \) and \(\dot{X} \) on the right-hand side, so that everything depends only on \(x \). Multiply the resulting series expansions and collect terms, to obtain \(\dot{x} = Rx - x^2 + kx^3 + O(x^4) \), where \(k \) depends on \(a, b, \) and \(R \).

(c)
Now the moment of triumph: choose \(b \) so that \(k = 0 \).

(d)
Is it really necessary to make the assumption \(R \neq 0 \)? Explain.